Chapter 17: Locomotion and Movement

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

Movement is a fundamental characteristic of living organisms, ranging from simple to complex forms:

Simple Forms:

- Protoplasmic streaming in Amoeba
- Ciliary and flagellar movements
- Tentacle movements in Hydra

Complex Forms:

- Limb movements in humans
- Locomotory movements (walking, running, swimming, flying)

Key Distinction:

- Movement: Any change in position of body parts
- **Locomotion:** Voluntary movement resulting in change of place/location
- Relationship: All locomotions are movements, but all movements are not locomotions

Purpose of Locomotion: Search for food, shelter, mates, breeding grounds, favorable climate, escape from predators

17.1 TYPES OF MOVEMENT

Human body cells exhibit three main types of movement:

1. Amoeboid Movement

Cells involved: Macrophages, leucocytes in blood Mechanism:

- Formation of pseudopodia
- Streaming of protoplasm (similar to Amoeba)
- Involvement of cytoskeletal elements (microfilaments) Function: Cellular locomotion and phagocytosis

2. Ciliary Movement

Location: Internal tubular organs lined by ciliated epithelium **Examples:**

- Trachea: Coordinated cilia remove dust and foreign particles
- Female reproductive tract: Facilitate passage of ova
- Spermatozoa: Flagellar movement for swimming **Mechanism:** Coordinated beating of cilia/flagella

3. Muscular Movement

Examples: Limb movements, jaw movements, tongue movements **Requirement:** Perfect coordination of muscular, skeletal, and neural systems **Importance:** Primary mechanism for locomotion in multicellular organisms

17.2 MUSCLE

General Characteristics

Origin: Specialized tissue of mesodermal origin **Proportion:** 40-50% of adult human body weight **Properties:**

1. **Excitability:** Ability to respond to stimuli

2. Contractility: Ability to shorten and generate force

3. Extensibility: Ability to be stretched

4. Elasticity: Ability to return to original shape

Classification of Muscles

Based on Location and Structure:

1. Skeletal Muscles

Location: Closely associated with skeletal components **Appearance:** Striped/striated under microscope **Control:** Voluntary (controlled by nervous system) **Function:** Locomotion and body posture changes **Also called:** Striated muscles, voluntary muscles

2. Visceral Muscles

Location: Inner walls of hollow visceral organs (alimentary canal, reproductive tract) **Appearance:** Smooth, non-striated **Control:** Involuntary (not under voluntary nervous control) **Function:** Transportation of food, gametes **Also called:** Smooth muscles, involuntary muscles

3. Cardiac Muscles

Location: Heart **Appearance:** Striated, branched **Control:** Involuntary (not directly controlled by nervous system) **Function:** Pumping blood **Structure:** Many cardiac muscle cells in branching pattern

Structure of Skeletal Muscle

Organizational Hierarchy

1. Muscle Organization

Muscle → **Fascicles** → **Muscle Fibers** → **Myofibrils** → **Myofilaments**

Fascia: Common collagenous connective tissue layer holding muscle bundles **Fascicles:** Muscle bundles containing multiple muscle fibers

2. Muscle Fiber Structure

Sarcolemma: Plasma membrane lining the muscle fiber **Sarcoplasm:** Cytoplasm containing many nuclei (syncytium) **Sarcoplasmic Reticulum:** ER storing calcium ions **Myofibrils:** Parallelly arranged filaments in sarcoplasm

Myofibril Structure

Band Pattern

I-band (Isotropic): Light band containing actin (thin filaments) **A-band (Anisotropic):** Dark band containing myosin (thick filaments) **Z-line:** Elastic fiber bisecting I-band, attachment point for thin filaments **M-line:** Thin fibrous membrane holding thick filaments in A-band center **H-zone:** Central part of A-band not overlapped by thin filaments

Sarcomere: Functional unit of contraction between two successive Z-lines

17.2.1 Structure of Contractile Proteins

Actin (Thin Filament)

Structure:

- Two F-actin (filamentous) helically wound
- Each F-actin: polymer of G-actin (globular) monomers
- **Tropomyosin:** Two filaments running along F-actin
- **Troponin:** Complex protein at regular intervals on tropomyosin

Resting State: Troponin subunit masks myosin binding sites on actin

Myosin (Thick Filament)

Structure:

- Polymerized protein of meromyosin monomers
- Each meromyosin has two parts:
 - Heavy Meromyosin (HMM): Globular head with short arm
 - **Light Meromyosin (LMM):** Tail portion

Cross Arms: HMM components projecting outward at regular intervals Globular Head Functions:

- Active ATPase enzyme
- ATP binding sites
- Actin binding sites

17.2.2 Mechanism of Muscle Contraction

Sliding Filament Theory

Principle: Muscle contraction occurs by sliding of thin filaments over thick filaments

Step-by-Step Process:

1. Neural Stimulation:

- Signal from CNS via motor neuron
- Motor Unit: Motor neuron + connected muscle fibers
- Neuromuscular Junction/Motor End Plate: Junction between neuron and sarcolemma

2. Action Potential Generation:

- Neurotransmitter (Acetylcholine) released
- Action potential generated in sarcolemma
- Spreads through muscle fiber

3. Calcium Release:

- Ca²⁺ ions released from sarcoplasmic reticulum into sarcoplasm
- Increased Ca²⁺ levels activate the contraction mechanism

4. Cross Bridge Formation:

- Ca²⁺ binds to troponin subunit on actin
- Removes masking of myosin binding sites on actin
- ATP hydrolysis provides energy
- Myosin head binds to exposed active sites on actin
- Forms cross bridge

5. Power Stroke:

- Cross bridge pulls actin filaments toward center of A-band
- Z-lines pulled inward
- Sarcomere shortens (contraction)
- I-bands reduce, A-bands retain length

6. Cross Bridge Breaking:

- Myosin releases ADP and Pi, returns to relaxed state
- New ATP binds, cross bridge breaks
- Cycle repeats for continued contraction

7. Relaxation:

- Ca²⁺ ions pumped back to sarcoplasmic cisternae
- Actin filaments masked again
- Z-lines return to original position
- Muscle relaxes

Energy and Fatigue

Energy Source: ATP hydrolysis **Fatigue Cause:** Lactic acid accumulation from anaerobic glycogen

breakdown **Oxygen Storage:** Myoglobin (red pigment in muscles)

Muscle Fiber Types

Red Fibers (Slow-twitch)

Characteristics:

- High myoglobin content (reddish appearance)
- Plenty of mitochondria
- High oxygen storage capacity
- Aerobic ATP production
- Fatigue-resistant **Also called:** Aerobic muscles

White Fibers (Fast-twitch)

Characteristics:

- Low myoglobin content (pale/whitish appearance)
- Few mitochondria
- High sarcoplasmic reticulum
- Anaerobic energy production
- Fast contraction, quick fatigue

17.3 SKELETAL SYSTEM

Overview

Components: Framework of bones and cartilages Total bones: 206 bones in adult humans

Functions: Support, protection, movement facilitation Tissue types:

- **Bone:** Hard matrix due to calcium salts
- Cartilage: Slightly pliable matrix due to chondroitin salts

Divisions of Skeletal System

1. Axial Skeleton (80 bones)

Definition: Bones distributed along main body axis **Components:** Skull, vertebral column, sternum, ribs

Skull (22 bones total)

Cranial bones: 8 bones forming cranium (brain protection) **Facial bones:** 14 bones forming front part of skull **Additional:**

• Hyoid bone: U-shaped bone at base of buccal cavity

- Ear ossicles: 3 tiny bones per middle ear (Malleus, Incus, Stapes)
- Occipital condyles: 2 condyles for skull-vertebral column articulation (dicondylic skull)

Vertebral Column (26 vertebrae)

Structure: Serially arranged vertebrae with central neural canal **Regions and counts:**

• **Cervical:** 7 vertebrae (consistent across most mammals)

• Thoracic: 12 vertebrae

• Lumbar: 5 vertebrae

• **Sacral:** 1 (fused) vertebrae

• Coccygeal: 1 (fused) vertebrae

First vertebra: Atlas (articulates with occipital condyles) **Functions:** Spinal cord protection, head support, attachment point for ribs and back muscles

Ribs and Sternum

Sternum: Flat bone on ventral midline of thorax **Ribs:** 12 pairs of thin flat bones **Rib** characteristics:

- Bicephalic: Two articulation surfaces on dorsal end
- Dorsal attachment: Thoracic vertebrae
- Ventral attachment: Sternum (via hyaline cartilage)

Rib Classifications:

- **True ribs:** First 7 pairs (directly attached to sternum)
- **Vertebrochondral (False) ribs:** 8th, 9th, 10th pairs (indirectly attached via 7th rib)
- **Floating ribs:** 11th and 12th pairs (no ventral attachment)

Rib cage: Thoracic vertebrae + ribs + sternum

2. Appendicular Skeleton

Definition: Bones of limbs and their girdles **Limb bones:** 30 bones per limb

Upper Limb (Forelimb) Bones

Arm bones:

• **Humerus:** Upper arm bone

• Radius and Ulna: Forearm bones

Hand bones:

• Carpals: 8 wrist bones

• **Metacarpals:** 5 palm bones

• **Phalanges:** 14 digit bones

Lower Limb (Hindlimb) Bones

Leg bones:

• **Femur:** Thigh bone (longest bone in body)

• **Tibia and Fibula:** Lower leg bones

• Patella: Cup-shaped knee cap bone

Foot bones:

• Tarsals: 7 ankle bones

• **Metatarsals:** 5 foot bones

• **Phalanges:** 14 digit bones

Girdles

Pectoral Girdle

Function: Articulates upper limbs with axial skeleton **Structure:** Two halves, each containing:

- Clavicle: Long slender bone with two curvatures (collar bone)
- **Scapula:** Large triangular flat bone (shoulder blade)

Scapula features:

- **Spine:** Slightly elevated ridge on dorsal surface
- Acromion: Flat expanded process projecting from spine
- **Glenoid cavity:** Depression below acromion (shoulder joint formation)

Pelvic Girdle

Function: Articulates lower limbs with axial skeleton **Structure:** Two coxal bones **Each coxal bone:** Fusion of three bones:

- Ilium: Upper portion
- **Ischium:** Lower posterior portion
- **Pubis:** Lower anterior portion

Key features:

- **Acetabulum:** Cavity at fusion point (hip joint formation)
- **Pubic symphysis:** Ventral meeting point of two halves (contains fibrous cartilage)

17.4 JOINTS

Definition and Function

Joints: Points of contact between bones or between bones and cartilages **Function:** Enable movement with joint acting as fulcrum **Movement mechanism:** Muscle force applied through joints

Classification of Joints

1. Fibrous Joints

Mobility: No movement allowed **Structure:** Dense fibrous connective tissue **Example:** Skull bone sutures forming cranium **Also called:** Immovable joints

2. Cartilaginous Joints

Mobility: Limited movement **Structure:** Bones joined by cartilages **Example:** Adjacent vertebrae in vertebral column **Also called:** Slightly movable joints

3. Synovial Joints

Mobility: Considerable movement **Structure:** Fluid-filled synovial cavity between articulating surfaces **Function:** Locomotion and complex movements **Also called:** Freely movable joints

Types of Synovial Joints

Joint Type	Example	Movement Type
Ball and Socket	Humerus-Pectoral girdle	Multi-directional
Hinge	Knee joint	Uni-directional
Pivot	Atlas-Axis vertebrae	Rotational
Gliding	Between carpals	Sliding
	•	•

Joint Type	Example	Movement Type
Saddle	Carpal-Metacarpal of thumb	Bi-directional
■	·	·

17.5 DISORDERS OF MUSCULAR AND SKELETAL SYSTEM

Muscular Disorders

Myasthenia Gravis

Type: Autoimmune disorder **Affected area:** Neuromuscular junction **Symptoms:** Fatigue, muscle weakening, paralysis of skeletal muscles **Cause:** Immune system attacks acetylcholine receptors

Muscular Dystrophy

Type: Genetic disorder (mostly) **Process:** Progressive degeneration of skeletal muscles

Characteristics: Muscle weakness, loss of muscle mass Inheritance: Often X-linked recessive

Tetany

Cause: Low Ca²⁺ levels in body fluid **Symptoms:** Rapid spasms (wild contractions) in muscles

Mechanism: Insufficient calcium for proper muscle relaxation

Skeletal Disorders

Arthritis

Definition: Inflammation of joints **Types:** Rheumatoid arthritis, osteoarthritis **Symptoms:** Joint pain, stiffness, reduced mobility **Causes:** Autoimmune, wear and tear, infection

Osteoporosis

Definition: Decreased bone mass and density **Characteristics:** Increased fracture risk **Common cause:** Decreased estrogen levels (especially post-menopause) **Demographics:** Age-related disorder, more common in women

Gout

Cause: Accumulation of uric acid crystals in joints **Process:** Inflammation of joints due to crystal deposits **Commonly affected:** Big toe joint, knee, ankle **Risk factors:** High purine diet, genetics, kidney dysfunction

NEET-Specific Important Points

High-Yield Topics for NEET:

1. Muscle Structure and Function:

- Types of muscles and their characteristics
- Sarcomere structure (A-band, I-band, Z-line, H-zone)
- Contractile proteins (actin, myosin, troponin, tropomyosin)
- Sliding filament theory mechanism

2. Muscle Contraction Process:

- Role of calcium ions
- Cross-bridge formation and breaking
- ATP involvement in muscle contraction
- Neuromuscular junction function

3. Skeletal System:

- Bone count (206 total, 80 axial, 126 appendicular)
- Vertebral column regions and counts
- Rib classifications
- Girdle structures and functions

4. Joint Classifications:

- Types and examples of joints
- Synovial joint varieties
- Movement patterns

5. Disorders:

- Muscle and bone disorders
- Causes and symptoms

Common NEET Question Patterns:

1. Structure-Function Questions:

- Identify muscle types from characteristics
- Sarcomere band identification
- Bone and joint classifications

2. Process Questions:

- Muscle contraction mechanism steps
- Calcium role in contraction
- Cross-bridge cycle

3. Numerical Questions:

- Bone counts in different regions
- Vertebrae numbers in each region
- Rib pair classifications

4. Disorder-Based Questions:

- Symptoms and causes matching
- Disease identification from characteristics

Memory Aids and Mnemonics

Muscle Types:

"Skeletal Soldiers Voluntarily Strike, Visceral Villains Involuntarily Invade, Cardiac Commandos Involuntarily Inspire"

• **Skeletal:** Striated, Voluntary

• Visceral: Smooth, Involuntary

• Cardiac: Striated, Involuntary

Sarcomere Bands:

"A Dark Band Always Includes Myosin, I Light Band Is Actin"

• **A-band:** Dark, contains myosin (thick filaments)

• **I-band:** Light, contains actin (thin filaments)

Vertebral Column:

"Cervical Children Thoroughly Love Soft Candies"

• **C**ervical: 7

• Thoracic: 12

• Lumbar: 5

• **S**acral: 1 (fused)

• **C**occygeal: 1 (fused)

Rib Classifications:

"True ribs Touch The Sternum (1-7), False ribs Fake The Connection (8-10), Floating ribs Find Freedom (11-12)"

Joint Types Movement:

"Fibrous = Fixed, Cartilaginous = Cautious, Synovial = Super mobile"

Contractile Proteins:

"Actin Acts Thin, Myosin Makes Thick"

• Actin: Thin filaments

• Myosin: Thick filaments

Practice Questions for NEET

Multiple Choice Questions:

- 1. The functional unit of muscle contraction is: a) Myofibril b) Sarcomere c) Myofilament d) Muscle fiber
- 2. Which of the following is NOT a property of muscles? a) Excitability b) Contractility c) Conductivity d) Extensibility

- 3. The total number of bones in axial skeleton is: a) 206 b) 126 c) 80 d) 64
- 4. Ca²⁺ ions in muscle contraction are stored in: a) Sarcolemma b) Sarcoplasm c) Sarcoplasmic reticulum d) Myofibrils

Short Answer Questions:

- 1. Define sliding filament theory.
- 2. Distinguish between red and white muscle fibers.
- 3. What is the role of calcium in muscle contraction?
- 4. Name the three types of joints with examples.

Long Answer Questions:

- 1. Describe the mechanism of muscle contraction with the role of various proteins involved.
- 2. Explain the organization of skeletal system in humans.
- 3. Describe the structure of sarcomere with a neat diagram.

Summary Table: Key Comparisons

Muscle Types Comparison:

Feature	Skeletal	Visceral	Cardiac
Appearance	Striated	Smooth	Striated, Branched
Control	Voluntary	Involuntary	Involuntary
Location	Attached to bones	Visceral organs	Heart
Function	Locomotion	Organ function	Blood circulation
4	'	·	•

Skeletal Divisions:

Division	Bone Count	Major Components
Axial	80	Skull, vertebral column, ribs, sternum
Appendicular	126	Limb bones, girdles
Total	206	Complete skeleton
◀	'	>

Joint Types:

Joint Type	Mobility	Structure	Examples
Fibrous	Immovable	Dense fibrous tissue	Skull sutures
Cartilaginous	Slightly movable	Cartilage connection	Vertebrae
Synovial	Freely movable	Synovial cavity	Ball-socket, Hinge
▲	'	•	>

Muscle Fiber Types:

Feature	Red Fibers	White Fibers
Myoglobin	High	Low
Mitochondria	Abundant	Few
Contraction	Slow, sustained	Fast, brief
Fatigue	Resistant	Quick fatigue
Metabolism	Aerobic	Anaerobic
◀	·	>

Evolutionary Significance

Locomotion Evolution:

1. **Simple** → **Complex:** Amoeboid → Muscular locomotion

2. **Efficiency improvement:** Development of skeletal support

3. Specialization: Different muscle types for specific functions

4. **Coordination:** Integration of muscular, skeletal, and nervous systems

Adaptive Advantages:

• **Predator avoidance:** Rapid escape mechanisms

• Resource acquisition: Efficient foraging and hunting

• Reproduction: Mate finding and territorial behavior

• Environmental adaptation: Migration and habitat selection

EXAM SPRINT - Master Locomotion and Movement with focused study on muscle contraction mechanism, skeletal system organization, joint classifications, and movement types. Regular practice of structure-function relationships and process explanations is key to NEET success.

Source: NCERT Biology Class 11, Chapter 17 - Comprehensive coverage for NEET preparation