Chapter 16: Excretory Products and Their Elimination

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

Animals accumulate various metabolic wastes that must be eliminated for healthy functioning:

- Nitrogenous wastes: Ammonia, urea, uric acid
- Other wastes: Carbon dioxide, water, ions (Na⁺, K⁺, Cl⁻, phosphate, sulphate)
- **Sources:** Metabolic activities, excess ingestion

Key Principle: Toxicity vs Water Requirement

- Ammonia: Most toxic, requires large amounts of water
- Uric acid: Least toxic, requires minimum water loss

Types of Nitrogenous Excretion

1. Ammonotelism

Definition: Process of excreting ammonia as primary nitrogenous waste **Organisms:** Bony fishes, aquatic amphibians, aquatic insects **Characteristics:**

- Ammonia readily soluble in water
- Excreted by diffusion across body surfaces

- Through gill surfaces as ammonium ions in fish
- Kidneys play minimal role in removal

2. Ureotelism

Definition: Process of excreting urea as primary nitrogenous waste **Organisms:** Mammals, terrestrial amphibians, marine fishes **Mechanism:**

- Ammonia converted to urea in liver
- Released into blood
- Filtered and excreted by kidneys
- Some urea retained for osmolarity maintenance

3. Uricotelism

Definition: Process of excreting uric acid as primary nitrogenous waste **Organisms:** Reptiles, birds, land snails, insects **Characteristics:**

- Excreted as pellet or paste
- Minimum water loss
- Adaptation for terrestrial life

Excretory Organs in Different Animals

Organism Group	Excretory Structure	Function
Platyhelminthes, Rotifers	Protonephridia/Flame cells	Osmoregulation, ionic balance
Earthworms, Annelids	Nephridia	Nitrogenous waste removal, fluid balance
Insects (Cockroaches)	Malpighian tubules	Nitrogenous waste removal, osmoregulation
Crustaceans (Prawns)	Antennal/Green glands	Excretion

Organism Group	Excretory Structure	Function	
Vertebrates	Kidneys	Complex excretion and regulation	
✓	•	•	

16.1 HUMAN EXCRETORY SYSTEM

System Components

- 1. Pair of kidneys Main excretory organs
- 2. Pair of ureters Transport urine to bladder
- 3. **Urinary bladder** Storage of urine
- 4. Urethra Release of urine

Kidney Structure

External Features

Location: Between last thoracic and third lumbar vertebra **Position:** Close to dorsal inner wall of abdominal cavity **Shape:** Reddish-brown, bean-shaped **Dimensions:**

- Length: 10-12 cm
- Width: 5-7 cm
- Thickness: 2-3 cm
- Weight: 120-170 g

Internal Structure

Hilum: Central notch for entry of ureter, blood vessels, nerves **Renal pelvis:** Broad funnel-shaped space with projections (calyces) **Capsule:** Tough outer protective layer

Two Main Zones:

1. **Cortex:** Outer layer

2. **Medulla:** Inner layer with conical masses (medullary pyramids)

Columns of Bertini: Cortical extensions between medullary pyramids

Nephron - Functional Unit

Nephron Count

Each kidney contains approximately 1 million nephrons

Nephron Components

1. Glomerulus:

- Tuft of capillaries
- Formed by afferent arteriole (branch of renal artery)
- Blood carried away by efferent arteriole

2. Renal Tubule:

- Bowman's capsule: Double-walled cup enclosing glomerulus
- Malpighian body/Renal corpuscle: Glomerulus + Bowman's capsule
- **Proximal Convoluted Tubule (PCT):** Highly coiled network
- **Henle's Loop:** Hairpin-shaped with descending and ascending limbs
- **Distal Convoluted Tubule (DCT):** Another coiled region
- **Collecting Duct:** Straight tube receiving multiple DCTs

Types of Nephrons

1. Cortical Nephrons:

- Short loop of Henle
- Extends little into medulla
- Majority of nephrons

2. Juxtamedullary Nephrons:

- Long loop of Henle
- Runs deep into medulla
- Important for concentration

Blood Supply

Peritubular capillaries: Fine network around renal tubule from efferent arteriole **Vasa recta:** Ushaped vessel parallel to Henle's loop (absent/reduced in cortical nephrons)

16.2 URINE FORMATION

Three Main Processes

1. Glomerular Filtration

Process: Blood filtration by glomerulus **Volume filtered:** 1100-1200 ml/minute (1/5th of cardiac output) **Mechanism:** Glomerular capillary blood pressure causes ultrafiltration

Filtration Barriers (3 layers):

- 1. Endothelium of glomerular blood vessels
- 2. Basement membrane
- 3. Epithelium of Bowman's capsule

Podocytes: Epithelial cells with filtration slits/slit pores **Result:** All plasma constituents except proteins pass into Bowman's capsule

Glomerular Filtration Rate (GFR):

• Rate: 125 ml/minute

• Daily volume: 180 liters/day

• Regulation: Juxtaglomerular Apparatus (JGA)

JGA Function:

• Specialized region in DCT and afferent arteriole

• Fall in GFR activates JG cells to release renin

• Renin stimulates glomerular blood flow and normalizes GFR

2. Reabsorption

Need: 99% of filtrate must be reabsorbed (180L \rightarrow 1.5L urine) **Mechanisms:** Active and passive transport by tubular epithelial cells

Active Reabsorption: Glucose, amino acids, Na⁺ **Passive Reabsorption:** Nitrogenous wastes, water (initial segments)

3. Secretion

Process: Tubular cells secrete substances into filtrate **Substances secreted:** H⁺, K⁺, ammonia

Function: Maintain ionic and acid-base balance

16.3 FUNCTION OF THE TUBULES

Proximal Convoluted Tubule (PCT)

Structure: Simple cuboidal brush border epithelium **Function:**

- Reabsorbs nearly all essential nutrients
- Reabsorbs 70-80% of electrolytes and water
- Maintains pH and ionic balance
- Secretes H⁺ and NH₃ into filtrate
- Absorbs HCO₃⁻ from filtrate

Henle's Loop

Descending Limb:

- Permeable to water
- Almost impermeable to electrolytes
- Concentrates filtrate as it moves down

Ascending Limb:

- Impermeable to water
- Allows electrolyte transport (active/passive)
- Dilutes filtrate due to electrolyte passage
- Minimal reabsorption
- Maintains high osmolarity of medullary interstitial fluid

Distal Convoluted Tubule (DCT)

Functions:

- Conditional reabsorption of Na⁺ and water
- Reabsorption of HCO₃⁻
- Selective secretion of H⁺, K⁺ ions, and NH₃
- Maintains pH and sodium-potassium balance

Collecting Duct

Structure: Extends from cortex to inner medulla **Functions:**

- Large amounts of water reabsorption
- Produces concentrated urine
- Allows small amounts of urea into medullary interstitium
- Maintains osmolarity
- pH and ionic balance maintenance through H⁺ and K⁺ secretion

16.4 MECHANISM OF CONCENTRATION OF THE FILTRATE

Counter Current Mechanism

Key Players: Henle's loop and vasa recta

Principle:

- Filtrate flows in opposite directions in Henle's loop limbs
- Blood flows in opposite directions in vasa recta limbs
- Creates and maintains osmotic gradient

Osmolarity Gradient:

• Cortex: 300 mOsmol/L

- Inner medulla: 1200 mOsmol/L
- Gradient maintained by NaCl and urea

NaCl Transport:

- Ascending limb of Henle's loop transports NaCl
- Exchanges with descending limb of vasa recta
- Returned to interstitium by ascending vasa recta

Urea Cycling:

- Small amounts enter thin ascending limb of Henle's loop
- Transported back to interstitium by collecting tubule
- Maintains medullary osmolarity

Result: Human kidneys can concentrate urine 4× more than initial filtrate

16.5 REGULATION OF KIDNEY FUNCTION

Hormonal Feedback Mechanisms

1. ADH (Antidiuretic Hormone/Vasopressin)

Source: Hypothalamus → Neurohypophysis **Trigger:** Osmoreceptors activated by:

- Blood volume changes
- Body fluid volume changes
- Ionic concentration changes

Function:

- Facilitates water reabsorption from tubule
- Prevents diuresis
- Constricts blood vessels (increases blood pressure)
- Increases glomerular blood flow and GFR

Feedback: Increased body fluid volume suppresses ADH release

2. Renin-Angiotensin Mechanism

Trigger: Fall in glomerular blood flow/pressure/GFR

Process:

- 1. JG cells release renin
- 2. Renin converts angiotensinogen → Angiotensin I
- 3. Angiotensin I → Angiotensin II
- 4. Angiotensin II (powerful vasoconstrictor):
 - Increases glomerular blood pressure
 - Increases GFR
 - Activates adrenal cortex → Aldosterone

Aldosterone Function:

- Reabsorption of Na⁺ and water from distal tubule
- Increases blood pressure and GFR

3. Atrial Natriuretic Factor (ANF)

Source: Heart atria (increased blood flow) **Function:**

• Causes vasodilation

- Decreases blood pressure
- Acts as check on renin-angiotensin mechanism

16.6 MICTURITION

Definition

Process of urine release from urinary bladder

Mechanism

Storage: Urine stored in bladder until voluntary signal from CNS **Trigger:** Stretching of bladder wall as it fills **Process:**

- 1. Stretch receptors in bladder wall activated
- 2. Signals sent to CNS
- 3. CNS sends motor messages
- 4. Smooth muscle contraction in bladder
- 5. Simultaneous relaxation of urethral sphincter
- 6. Urine release

Micturition Reflex: Neural mechanism causing micturition

Urine Characteristics

Daily volume: 1-1.5 liters Appearance: Light yellow, watery fluid pH: Slightly acidic (6.0) Odor:

Characteristic **Urea content:** 25-30 gm/day

Clinical Significance:

• Glycosuria: Glucose in urine (diabetes mellitus)

• **Ketonuria:** Ketone bodies in urine (diabetes mellitus)

16.7 ROLE OF OTHER ORGANS IN EXCRETION

Lungs

Function: Remove CO₂ and water Volume: ~200 mL CO₂/minute Daily water elimination:

Significant quantities

Liver

Function: Largest gland, secretes bile Substances eliminated:

- Bilirubin, biliverdin
- Cholesterol
- Degraded steroid hormones
- Vitamins and drugs **Route:** Pass out with digestive wastes

Skin

Sweat Glands:

• **Primary function:** Cooling

• Excretory function: Eliminate NaCl, urea, lactic acid

• **Composition:** Watery fluid with dissolved wastes

Sebaceous Glands:

• Eliminate: Sterols, hydrocarbons, waxes

• **Product:** Sebum (protective oily covering)

Additional

Saliva: Can eliminate small amounts of nitrogenous wastes

16.8 DISORDERS OF THE EXCRETORY SYSTEM

Uremia

Definition: Accumulation of urea in blood **Cause:** Kidney malfunction **Consequence:** Highly harmful, may lead to kidney failure

Hemodialysis

Purpose: Remove urea in kidney failure patients Process:

- 1. Blood drained from convenient artery
- 2. Anticoagulant (heparin) added
- 3. Blood pumped into artificial kidney (dialyzing unit)
- 4. Coiled cellophane tube surrounded by dialyzing fluid
- 5. Porous membrane allows waste passage based on concentration gradient
- 6. Cleared blood returned to body via vein
- 7. Anti-heparin added before return

Dialyzing fluid: Same composition as plasma except nitrogenous wastes

Kidney Transplantation

Method: Ultimate treatment for acute renal failure **Source:** Functioning kidney from donor (preferably close relative) **Challenge:** Minimize rejection by host immune system **Success:** Modern techniques have increased success rates

Other Disorders

Renal Calculi (Kidney Stones)

Definition: Insoluble mass of crystallized salts **Composition:** Oxalates and other salts **Location:** Within kidney

Glomerulonephritis

Definition: Inflammation of glomeruli **Effect:** Impairs filtration function

NEET-Specific Important Points

High-Yield Topics for NEET:

1. Types of Excretion:

- Ammonotelism, ureotelism, uricotelism
- Organisms and their excretory patterns
- Water requirement vs toxicity relationship

2. Nephron Structure:

- Parts identification and functions
- Blood supply (afferent/efferent arterioles)
- Types (cortical vs juxtamedullary)

3. Urine Formation:

- Three processes (filtration, reabsorption, secretion)
- GFR calculation and significance

• Tubular functions

4. Counter Current Mechanism:

- Henle's loop and vasa recta
- Osmolarity gradient maintenance
- Concentration of urine

5. Regulation:

- ADH mechanism
- Renin-angiotensin system
- ANF function

Common NEET Question Patterns:

1. Numerical Problems:

- GFR calculations (125 mL/min, 180 L/day)
- Blood filtration volume (1200 mL/min)
- Urine concentration (300→1200 mOsmol/L)

2. Process Questions:

- Urine formation steps
- Counter current mechanism
- Hormonal regulation

3. Identification Questions:

• Nephron parts and functions

- Excretory organs in different animals
- Hormone sources and functions

4. Comparative Questions:

- Types of excretion
- Tubular functions
- Cortical vs juxtamedullary nephrons

Memory Aids and Mnemonics

Types of Excretion:

"Animals Use Uric Acid"

- Ammonotelism (Aquatic animals)
- **U**reotelism (Terrestrial mammals)
- Uricotelism (Birds, reptiles)

Nephron Parts Sequence:

"Glomerular Blood Passes Happily Down Collecting"

- **G**lomerulus
- **B**owman's capsule
- **P**CT (Proximal Convoluted Tubule)
- Henle's loop
- **D**CT (Distal Convoluted Tubule)
- **C**ollecting duct

Henle's Loop Functions:

"Down Concentrates, Up Dilutes"

- **Descending limb:** Water permeable → Concentrates filtrate
- **Ascending limb:** Electrolyte permeable → Dilutes filtrate

Hormonal Regulation:

"ADH Retains, ANF Drains"

- **ADH:** Retains water (antidiuretic)
- **ANF:** Promotes water loss (natriuretic)

JGA Functions:

"Renin Raises Blood Pressure"

- **R**enin → Angiotensin pathway
- **R**aises glomerular blood pressure
- Blood flow and GFR increase

Practice Questions for NEET

Multiple Choice Questions:

- 1. The functional unit of kidney is: a) Glomerulus b) Bowman's capsule c) Nephron d) Collecting duct
- 2. Normal GFR in healthy individual is: a) 180 mL/min b) 125 mL/min c) 1200 mL/min d) 100 mL/min

- 3. Counter current mechanism involves: a) PCT and DCT b) Glomerulus and Bowman's capsule c) Henle's loop and vasa recta d) Collecting duct and ureter
- 4. Birds and reptiles are: a) Ammonotelic b) Ureotelic c) Uricotelic d) All of the above

Short Answer Questions:

- 1. Define GFR and mention its normal value.
- 2. Explain the counter current mechanism in brief.
- 3. What is the role of ADH in kidney function?
- 4. Why are terrestrial animals not ammonotelic?

Long Answer Questions:

- 1. Describe the structure of nephron with a neat diagram.
- 2. Explain the process of urine formation.
- 3. Describe the hormonal regulation of kidney function.

Summary Table: Key Comparisons

Excretory Types Comparison:

Туре	Waste Product	Toxicity	Water Need	Examples
Ammonotelic	Ammonia	High	High	Bony fish, aquatic amphibians
Ureotelic	Urea	Moderate	Moderate	Mammals, terrestrial amphibians
Uricotelic	Uric acid	Low	Low	Birds, reptiles, insects
4	ı	'	1	>

Nephron Parts Functions:

Structure	Location	Main Function
Glomerulus	Cortex	Filtration
Bowman's capsule	Cortex	Collect filtrate
PCT	Cortex	Major reabsorption
Henle's loop	Medulla	Concentration
DCT	Cortex	Fine regulation
Collecting duct	Cortex-Medulla	Final concentration
▲		>

Hormonal Regulation Summary:

Hormone	Source	Trigger	Function
ADH	Hypothalamus	Dehydration	Water retention
Aldosterone	Adrenal cortex	Low Na⁺/BP	Na ⁺ retention
ANF	Heart atria	High BP	Water/Na ⁺ loss
Renin	JGA	Low GFR	Activate angiotensin
∢	•	'	•

Evolutionary Significance

Excretory System Evolution:

1. **Simple** → **Complex:** Flame cells → Kidneys

2. **Aquatic** → **Terrestrial:** Ammonia → Urea/Uric acid

3. Water conservation: Development of concentration mechanisms

4. **Regulatory functions:** Beyond waste removal to homeostasis

Adaptive Significance:

- **Desert animals:** Enhanced uric acid excretion
- Marine fish: Specialized osmoregulation
- Mammals: Efficient urea cycle and concentration

EXAM SPRINT - Master Excretory Products and Their Elimination with focused study on nephron structure, urine formation processes, regulatory mechanisms, and comparative excretion patterns. Regular practice of process explanations and numerical problems is key to NEET success.

Source: NCERT Biology Class 11, Chapter 16 - Comprehensive coverage for NEET preparation