Chapter 19: Chemical Coordination and Integration

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

The human body requires two major coordination systems:

1. **Neural System:** Point-to-point rapid coordination (fast but short-lived)

2. **Endocrine System:** Chemical coordination through hormones (slow but long-lasting)

Key Difference:

• Neural coordination: Immediate response, localized effect

• Chemical coordination: Gradual response, widespread effect

Integration: Both systems work together to regulate physiological functions

19.1 ENDOCRINE GLANDS AND HORMONES

Endocrine Glands

Definition: Ductless glands that secrete hormones directly into blood **Characteristics:**

- No ducts (unlike exocrine glands)
- Secretions called hormones
- Highly vascularized

Hormones - Modern Definition

Classical Definition: Chemical produced by endocrine glands, transported via blood to distant target organs

Current Scientific Definition:

Hormones are non-nutrient chemicals which act as intercellular messengers and are produced in trace amounts.

Key Features:

- Non-nutrient chemicals
- Intercellular messengers
- Produced in trace amounts
- Act on target tissues/organs

Evolutionary Perspective:

- **Invertebrates:** Simple endocrine systems, few hormones
- Vertebrates: Complex systems, numerous hormones
- **Humans:** Highly developed endocrine system

19.2 HUMAN ENDOCRINE SYSTEM

Major Endocrine Glands

- 1. **Hypothalamus** Master regulator
- 2. Pituitary Master gland
- 3. **Pineal** Biological clock

- 4. **Thyroid** Metabolic regulator
- 5. **Parathyroid** Calcium homeostasis
- 6. **Thymus** Immune development
- 7. **Adrenal** Stress response
- 8. Pancreas Glucose homeostasis
- 9. **Gonads** Reproductive functions
 - Testis (males)
 - Ovary (females)

Additional Hormone-Producing Organs

- Gastrointestinal tract
- Liver
- Kidney
- Heart

19.2.1 THE HYPOTHALAMUS

Location and Structure

Position: Basal part of diencephalon, forebrain **Components:** Several groups of neurosecretory cells called nuclei

Functions

Primary Role: Regulates wide spectrum of body functions **Mechanism:** Produces hormones that regulate pituitary function

Hypothalamic Hormones

Types:

- 1. **Releasing Hormones:** Stimulate pituitary secretion
- 2. **Inhibiting Hormones:** Inhibit pituitary secretion

Examples:

Releasing Hormones:

- GnRH (Gonadotrophin Releasing Hormone): Stimulates LH and FSH release
- TRH (Thyrotrophin Releasing Hormone): Stimulates TSH release
- CRH (Corticotrophin Releasing Hormone): Stimulates ACTH release
- GHRH (Growth Hormone Releasing Hormone): Stimulates GH release

Inhibiting Hormones:

- Somatostatin: Inhibits GH release
- PIH (Prolactin Inhibiting Hormone/Dopamine): Inhibits prolactin release

Hypothalamo-Pituitary Connection

Anterior Pituitary: Connected via hypothalamo-hypophyseal portal system **Posterior Pituitary:** Direct neural connection via hypothalamo-hypophyseal tract

19.2.2 THE PITUITARY GLAND

Location and Structure

Position: Sella tursica (bony cavity in sphenoid bone) **Attachment:** Connected to hypothalamus by infundibulum (stalk)

Anatomical Divisions

1. Adenohypophysis (Anterior Pituitary)

Parts:

- Pars Distalis: Main hormone-producing region
- Pars Intermedia: Almost merged with pars distalis in humans

2. Neurohypophysis (Posterior Pituitary)

Part:

• Pars Nervosa: Storage and release of hypothalamic hormones

Anterior Pituitary Hormones (Pars Distalis)

1. Growth Hormone (GH/STH)

Function: Promotes growth of all body tissues **Target:** All body cells, especially bones and muscles **Disorders:**

- Excess in children: Gigantism
- **Deficiency in children:** Pituitary dwarfism
- Excess in adults: Acromegaly (facial disfigurement)

2. Prolactin (PRL)

Function:

- Regulates mammary gland growth
- Stimulates milk production **Target:** Mammary glands

3. Thyroid Stimulating Hormone (TSH)

Function: Stimulates thyroid hormone synthesis and secretion Target: Thyroid gland

4. Adrenocorticotrophic Hormone (ACTH)

Function: Stimulates glucocorticoid synthesis and secretion Target: Adrenal cortex

5. Gonadotrophins

Luteinizing Hormone (LH):

• **Males:** Stimulates testosterone synthesis from Leydig cells

• Females: Induces ovulation, maintains corpus luteum

Follicle Stimulating Hormone (FSH):

• Males: Regulates spermatogenesis (with androgens)

• Females: Stimulates ovarian follicle development

Pars Intermedia Hormone

Melanocyte Stimulating Hormone (MSH)

Function: Regulates skin pigmentation Target: Melanocytes (melanin-containing cells)

Posterior Pituitary Hormones (Pars Nervosa)

Note: These hormones are synthesized in hypothalamus and stored/released by posterior pituitary

1. Oxytocin

Functions:

- Stimulates uterine contractions during childbirth
- Stimulates milk ejection (let-down reflex)

• Acts on smooth muscles **Target:** Uterus, mammary glands

2. Vasopressin (ADH - Antidiuretic Hormone)

Functions:

- Stimulates water and electrolyte reabsorption in kidney
- Reduces water loss through urine
- Increases blood pressure (vasoconstriction) **Target:** Kidney tubules, blood vessels

Disorder:

• ADH Deficiency: Diabetes Insipidus (excessive water loss, dehydration)

19.2.3 THE PINEAL GLAND

Location

Position: Dorsal side of forebrain

Hormone: Melatonin

Functions:

1. Circadian Rhythm Regulation: Maintains 24-hour biological clock

2. Sleep-Wake Cycle: Regulates sleep patterns

3. **Body Temperature:** Maintains temperature rhythm

4. Additional Effects:

- Influences metabolism
- Affects pigmentation
- Regulates menstrual cycle

• Influences immune function

Regulation:

- Light exposure: Inhibits melatonin production
- Darkness: Stimulates melatonin production

19.2.4 THYROID GLAND

Structure

Location: Two lobes on either side of trachea Connection: Isthmus (thin connective tissue)

Microscopic Structure:

• **Follicles:** Spherical structures with follicular cells

• Stromal Tissue: Supporting connective tissue

Thyroid Hormones

1. Triiodothyronine (T₃) and Thyroxine (T₄)

Synthesis: Requires iodine **Functions:**

- Basal Metabolic Rate: Primary regulator
- **Growth and Development:** Essential for normal development
- Carbohydrate, Protein, Fat Metabolism: Regulates all major metabolisms
- Red Blood Cell Formation: Supports erythropoiesis
- Water and Electrolyte Balance: Maintains homeostasis

2. Thyrocalcitonin (TCT)/Calcitonin

Function: Decreases blood calcium levels Mechanism: Inhibits bone resorption

Thyroid Disorders

1. Hypothyroidism

Cause: lodine deficiency, thyroid dysfunction **Manifestations:**

• Goitre: Enlargement of thyroid gland

• **Cretinism:** In children (stunted growth, mental retardation)

• Myxedema: In adults (slow metabolism, weight gain)

• Irregular menstrual cycle: In women

2. Hyperthyroidism

Cause: Overactive thyroid, cancer, nodules Manifestations:

- Graves' Disease/Exophthalmic Goitre:
 - Thyroid enlargement
 - Eyeball protrusion (exophthalmos)
 - Increased BMR
 - Weight loss

19.2.5 PARATHYROID GLAND

Structure

Number: Four glands **Location:** Back side of thyroid gland (one pair in each lobe)

Hormone: Parathyroid Hormone (PTH)

Functions (Hypercalcemic Hormone):

- 1. Bone Resorption: Stimulates dissolution/demineralization
- 2. **Kidney:** Increases Ca²⁺ reabsorption by renal tubules
- 3. Intestine: Increases Ca²⁺ absorption from food

Regulation:

- Low blood Ca²⁺: Stimulates PTH release
- **High blood Ca²⁺:** Inhibits PTH release

Calcium Homeostasis:

PTH + TCT work together to maintain blood calcium levels

- PTH: Increases blood Ca²⁺
- TCT: Decreases blood Ca²⁺

19.2.6 THYMUS

Location

Position: Lobular structure between lungs, behind sternum, ventral to aorta

Function

Primary Role: Development of immune system

Hormone: Thymosins

Functions:

- 1. **T-lymphocyte Differentiation:** Essential for cell-mediated immunity
- 2. **Antibody Production:** Promotes humoral immunity
- 3. **Immune System Development:** Critical during childhood

Age-Related Changes:

• **Childhood:** Active and large

• Adulthood: Gradual degeneration

• **Old age:** Significantly reduced, weakened immune responses

19.2.7 ADRENAL GLAND

Structure

Number: One pair (one above each kidney) Two Parts:

1. Adrenal Medulla: Central core

2. **Adrenal Cortex:** Outer region

Adrenal Medulla Hormones

Catecholamines:

- 1. Adrenaline (Epinephrine)
- 2. Noradrenaline (Norepinephrine)

Functions (Emergency Hormones/Fight or Flight):

Physiological Effects:

Increased alertness

- Pupillary dilation
- Piloerection (hair raising)
- Increased sweating
- Increased heart rate and contraction strength
- Increased respiration rate
- Glycogenolysis (glucose release)
- Lipolysis (fat breakdown)
- Proteolysis (protein breakdown)

Trigger: Stress, emergency situations

Adrenal Cortex Structure

Three Layers:

1. **Zona Glomerulosa:** Outer layer

2. **Zona Fasciculata:** Middle layer

3. **Zona Reticularis:** Inner layer

Adrenal Cortex Hormones (Corticoids)

1. Glucocorticoids (Cortisol - Main)

Functions:

- **Gluconeogenesis:** Glucose synthesis from non-carbohydrates
- **Lipolysis and Proteolysis:** Fat and protein breakdown
- Cardiovascular System: Maintains function
- **Kidney Function:** Supports normal function

- Anti-inflammatory: Reduces inflammation
- **Immune Suppression:** Suppresses immune responses
- **RBC Production:** Stimulates erythropoiesis

2. Mineralocorticoids (Aldosterone - Main)

Functions:

- Na⁺ and Water Reabsorption: At renal tubules
- **K**⁺ and **Phosphate Excretion:** Promotes elimination
- **Electrolyte Balance:** Maintains homeostasis
- **Blood Pressure:** Regulates through fluid balance

3. Androgenic Steroids (Small amounts)

Functions:

- Puberty: Growth of axial, pubic, and facial hair
- Secondary sexual characteristics: Minor contributions

Adrenal Disorders

Addison's Disease:

- Cause: Adrenal cortex hypofunction
- **Symptoms:** Acute weakness, fatigue, altered carbohydrate metabolism

19.2.8 PANCREAS

Dual Nature

Composite Gland: Both exocrine and endocrine functions

Endocrine Pancreas: Islets of Langerhans

Number: 1-2 million islets **Percentage:** Only 1-2% of pancreatic tissue

Cell Types and Hormones

1. α-cells → Glucagon

Functions (Hyperglycemic Hormone):

- **Glycogenolysis:** Breaks down glycogen to glucose (in liver)
- **Gluconeogenesis:** Synthesizes glucose from non-carbohydrates
- **Reduced Cellular Glucose Uptake:** Maintains blood glucose **Result:** Increases blood glucose levels (hyperglycemia)

2. β-cells → Insulin

Functions (Hypoglycemic Hormone):

- Enhanced Cellular Glucose Uptake: In hepatocytes and adipocytes
- **Glycogenesis:** Converts glucose to glycogen
- **Glucose Utilization:** Promotes cellular glucose use **Result:** Decreases blood glucose levels (hypoglycemia)

Glucose Homeostasis

Balance: Maintained jointly by insulin and glucagon

- **High glucose:** Insulin release
- Low glucose: Glucagon release

Pancreatic Disorders

Diabetes Mellitus:

- Cause: Insulin deficiency/resistance
- Symptoms:
 - Prolonged hyperglycemia
 - Glucose in urine (glycosuria)
 - Ketone body formation
- **Treatment:** Insulin therapy

19.2.9 **TESTIS**

Location

Position: Scrotal sac (outside abdomen)

Dual Function

- 1. **Primary sex organ:** Sperm production
- 2. **Endocrine gland:** Hormone secretion

Structure

Components:

- **Seminiferous tubules:** Sperm production
- **Stromal/Interstitial tissue:** Hormone production

Hormone-Producing Cells

Leydig Cells/Interstitial Cells: Located in intertubular spaces

Hormone: Androgens (Mainly Testosterone)

Functions:

- 1. Male Accessory Sex Organs: Development and function
 - Epididymis, vas deferens, seminal vesicles, prostate, urethra
- 2. Secondary Sexual Characteristics:
 - Muscular growth
 - Facial and axillary hair growth
 - Aggressiveness
 - Low pitch voice
- 3. **Spermatogenesis:** Major stimulatory role
- 4. **Sexual Behavior:** Influences libido through CNS
- 5. **Metabolic Effects:** Anabolic effects on proteins and carbohydrates

19.2.10 OVARY

Location

Position: Abdomen (pair of ovaries)

Dual Function

- 1. **Primary sex organ:** Ovum production (one per menstrual cycle)
- 2. **Endocrine gland:** Hormone secretion

Structure

Components:

• Ovarian follicles: Estrogen production

• **Corpus luteum:** Progesterone production (post-ovulation)

• **Stromal tissues:** Supporting structure

Hormones

1. Estrogen

Source: Growing ovarian follicles **Functions:**

- Female Secondary Sex Organs: Growth and activity stimulation
- Secondary Sexual Characteristics:
 - High pitch voice
 - Mammary gland development
 - Female body contour
- Ovarian Follicle Development: Growth stimulation
- **Sexual Behavior:** Regulation

2. Progesterone

Source: Corpus luteum (post-ovulation) **Functions:**

- **Pregnancy Maintenance:** Primary function
- Mammary Glands:
 - Alveoli formation (milk storage sacs)
 - Milk secretion stimulation

• **Uterine Changes:** Prepares for implantation

19.3 HORMONES OF HEART, KIDNEY AND GASTROINTESTINAL TRACT

Heart Hormone

Atrial Natriuretic Factor (ANF)

Source: Atrial wall of heart **Function:** Decreases blood pressure **Mechanism:**

• **Trigger:** Increased blood pressure

• Action: Causes blood vessel dilation

• **Result:** Reduced blood pressure

Kidney Hormone

Erythropoietin

Source: Juxtaglomerular cells of kidney **Function:** Stimulates erythropoiesis (RBC formation)

Importance: Maintains adequate RBC count

Gastrointestinal Tract Hormones

1. Gastrin

Source: G-cells of stomach **Functions:**

- Stimulates HCl secretion
- Stimulates pepsinogen secretion **Target:** Gastric glands

2. Secretin

Source: S-cells of duodenum **Functions:**

- Stimulates water secretion from pancreas
- Stimulates bicarbonate ion secretion **Target:** Exocrine pancreas

3. Cholecystokinin (CCK)

Source: I-cells of duodenum **Functions:**

- Stimulates pancreatic enzyme secretion
- Stimulates bile juice release Targets: Pancreas and gall bladder

4. Gastric Inhibitory Peptide (GIP)

Source: K-cells of duodenum **Functions:**

- Inhibits gastric secretion
- Inhibits gastric motility **Effect:** Slows gastric activity

Growth Factors

Source: Various non-endocrine tissues **Function:** Essential for tissue growth and repair/regeneration

19.4 MECHANISM OF HORMONE ACTION

Hormone-Receptor Interaction

Key Principle: Hormones act by binding to specific hormone receptors **Specificity:** Each receptor specific to one hormone only **Location:** Receptors present only in target tissues

Types of Hormone Receptors

1. Membrane-bound Receptors

Location: Cell membrane of target cells **Hormone Types:**

- Peptide hormones
- Polypeptide hormones
- Protein hormones
- Amino acid derivatives

2. Intracellular Receptors (Nuclear Receptors)

Location: Inside target cells (mostly nucleus) **Hormone Types:**

- Steroid hormones
- lodothyronines (thyroid hormones)

Chemical Classification of Hormones

1. Peptide, Polypeptide, Protein Hormones

Examples: Insulin, glucagon, pituitary hormones, hypothalamic hormones **Receptor Type:**

Membrane-bound

2. Steroid Hormones

Examples: Cortisol, testosterone, estradiol, progesterone **Receptor Type:** Intracellular

3. lodothyronines

Examples: T₃, T₄ (thyroid hormones) **Receptor Type:** Intracellular

4. Amino Acid Derivatives

Examples: Epinephrine, norepinephrine **Receptor Type:** Membrane-bound

Mechanisms of Action

Mechanism 1: Membrane-bound Receptors

Process:

- 1. Hormone binds to receptor on cell membrane
- 2. Hormone does NOT enter the cell
- 3. Generates second messengers (cAMP, IP₃, Ca²⁺)
- 4. Second messengers regulate cellular metabolism
- 5. Results in physiological effects

Second Messengers:

- Cyclic AMP (cAMP)
- Inositol triphosphate (IP₃)
- Calcium ions (Ca²⁺)
- Diacylglycerol (DAG)

Mechanism 2: Intracellular Receptors

Process:

- 1. Hormone enters the target cell
- 2. Binds to intracellular/nuclear receptor
- 3. Hormone-receptor complex formed
- 4. Complex interacts with genome (DNA)
- 5. Regulates gene expression
- 6. Results in protein synthesis changes
- 7. Leads to physiological and developmental effects

Key Features:

- Direct gene regulation
- Longer-lasting effects
- Involves transcription and translation

NEET-Specific Important Points

High-Yield Topics for NEET:

1. Hormone Classification:

- Based on chemical nature
- Based on mechanism of action
- Source glands and target organs

2. Hypothalamo-Pituitary Axis:

- Releasing and inhibiting hormones
- Anterior vs posterior pituitary
- Feedback mechanisms

3. Endocrine Disorders:

- Diabetes mellitus (insulin)
- Diabetes insipidus (ADH)
- Goitre (thyroid)
- Dwarfism/Gigantism (GH)

4. Hormone Functions:

- Growth and development
- Metabolism regulation
- Homeostasis maintenance
- Reproductive functions

5. Feedback Mechanisms:

- Negative feedback loops
- Hormone regulation
- Target organ responses

Common NEET Question Patterns:

1. Match the Following:

- Hormone with source gland
- Hormone with function
- Disorder with hormone deficiency

2. Assertion-Reason:

- Hormone mechanisms
- Physiological effects
- Regulatory systems

3. Multiple Choice:

- Hormone identification
- Function questions
- Disorder associations

4. Diagram-based:

- Endocrine gland locations
- Hormone pathways
- Feedback loops

Memory Aids and Mnemonics

Major Endocrine Glands:

"Hypocritical People Think All Pancreatic Tumors Give Out"

- **H**ypothalamus
- **P**ituitary
- **T**hyroid
- Adrenal
- Pancreas
- Thymus
- **G**onads
- Others (Heart, Kidney, GIT)

Anterior Pituitary Hormones:

"Go Look For The Good People"

- **G**H (Growth Hormone)
- **L**H (Luteinizing Hormone)
- **F**SH (Follicle Stimulating Hormone)

- **T**SH (Thyroid Stimulating Hormone)
- **G**H can also represent
- **P**RL (Prolactin)
- **ACTH** (AdrenoCorticoTropic Hormone)

Posterior Pituitary Hormones:

"Only Vampires" (both synthesized in hypothalamus)

- Oxytocin
- **V**asopressin (ADH)

Adrenal Cortex Layers (Outside to Inside):

"Go Find Rex"

- **G**lomerulosa (Aldosterone mineralocorticoid)
- Fasciculata (Cortisol glucocorticoid)
- **R**eticularis (Androgens)

Pancreatic Islet Cells:

"Alpha Gluco, Beta Insulin"

- α-cells → Glucagon (increases glucose)
- β-cells → Insulin (decreases glucose)

Calcium Regulation:

"PTH Puts, TCT Takes"

• **PTH** → **Puts** calcium in blood (increases)

• **TCT** → **Takes** calcium from blood (decreases)

Thyroid Hormones:

"T3 and T4 for BMR"

 \bullet T₃ and T₄ regulate Basal Metabolic Rate

Practice Questions for NEET

Multiple Choice Questions:

- 1. Which hormone is known as emergency hormone? a) Insulin b) Adrenaline c) Thyroxine d) Growth hormone
- 2. Diabetes mellitus is due to deficiency of: a) Insulin b) Glucagon c) Cortisol d) Aldosterone
- 3. Which gland is called master gland? a) Thyroid b) Adrenal c) Pituitary d) Pancreas
- 4. Goitre is caused by deficiency of: a) Iron b) Iodine c) Calcium d) Protein
- 5. Which hormone regulates blood calcium level? a) Insulin b) PTH c) ADH d) FSH

Match the Following:

Column I (Hormone) - Column II (Function)

- 1. Insulin a) Increases blood glucose
- 2. Glucagon b) Decreases blood glucose
- 3. ADH c) Water reabsorption
- 4. Oxytocin d) Milk ejection
- 5. TSH e) Stimulates thyroid

Short Answer Questions:

- 1. Name the hormones secreted by anterior pituitary.
- 2. What is the difference between diabetes mellitus and diabetes insipidus?
- 3. Explain the role of hypothalamus in hormone regulation.
- 4. What are the functions of thyroid hormones?

Long Answer Questions:

- 1. Describe the structure and functions of adrenal gland.
- 2. Explain the mechanism of hormone action with examples.
- 3. Discuss the role of pancreatic hormones in glucose homeostasis.

Summary Table: Key Hormone Information

Major Hormones Quick Reference:

Gland	Hormone	Primary Function	Target	Disorder	
Anterior Pituitary	GH	Growth	All tissues	Dwarfism/Gigantism	
	TSH	Thyroid stimulation	Thyroid	-	
	ACTH	Adrenal stimulation	Adrenal cortex	-	
	LH/FSH	Reproductive	Gonads	-	
	Prolactin	Milk production	Mammary glands	-	
Posterior Pituitary	ADH	Water retention	Kidney	Diabetes Insipidus	
	Oxytocin	Uterine contraction	Uterus/Mammary	-	
Thyroid	T ₃ /T ₄	Metabolism	All cells	Goitre/Cretinism	
	Calcitonin	Ca ²⁺ decrease	Bones	-	
Parathyroid	PTH	Ca ²⁺ increase	increase Bones/Kidney -		

Gland	Hormone	Primary Function	Target	Disorder
Adrenal Medulla	Adrenaline	Emergency response	Multiple organs	-
Adrenal Cortex	Cortisol	Stress response	Multiple organs	Addison's disease
	Aldosterone	Na⁺/Water retention	Kidney	-
Pancreas	Insulin	Glucose decrease	Liver/Muscle	Diabetes Mellitus
	Glucagon	Glucose increase	Liver	-
Testis	Testosterone	Male characteristics	Male organs	-
Ovary	Estrogen	Female characteristics	Female organs	-
	Progesterone	Pregnancy maintenance	Uterus	-
◀	1	•		•

Feedback Mechanism Types:

Туре	Description	Example	Effect
Negative	Droduct inhibits its own musely stien	Thyroid hormones →	Maintains
Feedback	Product inhibits its own production	TSH	homeostasis
Positive Feedback	Product stimulates its own production	Oxytocin during labor	Amplifies response
∢	•	'	>

Receptor Types and Mechanisms:

Receptor Type	Location	Hormone Examples	Mechanism
Membrane-bound	Cell surface	Insulin, Glucagon, Adrenaline	Second messenger system
Intracellular	Inside cell/nucleus	Steroid hormones, Thyroid hormones	Direct gene regulation
∢	1	'	>

Clinical Correlations

Common Endocrine Disorders:

1. Diabetes Mellitus

Type 1: Insulin deficiency (autoimmune) **Type 2:** Insulin resistance **Symptoms:** Polyuria, polydipsia, polyphagia **Complications:** Diabetic coma, ketoacidosis

2. Thyroid Disorders

Hypothyroidism: Fatigue, weight gain, cold intolerance **Hyperthyroidism:** Weight loss, heat intolerance, anxiety **Goitre:** Visible neck swelling

3. Adrenal Disorders

Addison's Disease: Weakness, fatigue, weight loss **Cushing's Syndrome:** Weight gain, muscle weakness, high BP

4. Growth Disorders

Growth Hormone Deficiency: Short stature **Growth Hormone Excess:** Gigantism (children), Acromegaly (adults)

5. Reproductive Disorders

PCOS: Hormonal imbalance affecting ovulation Hypogonadism: Reduced sex hormone production

EXAM SPRINT - Master Chemical Coordination and Integration with focused study on hormone sources, functions, mechanisms, and clinical correlations. Regular practice of hormone identification and function-based questions is crucial for NEET success.

Source: NCERT Biology Class 11, Chapter 19 - Comprehensive coverage for NEET preparation