Chapter 14: Breathing and Exchange of Gases

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

Respiration is a vital life process where organisms exchange oxygen (O₂) from the atmosphere with carbon dioxide (CO₂) produced by cells. This process is essential for cellular metabolism and energy production.

Why is Breathing Essential?

- Energy Production: O₂ helps break down glucose, amino acids, and fatty acids
- Waste Removal: CO₂ (harmful byproduct) must be eliminated
- Continuous Process: Cells need constant O₂ supply and CO₂ removal

Definition:

Breathing/Respiration: Process of exchange of O₂ from atmosphere with CO₂ produced by cells.

14.1 RESPIRATORY ORGANS

Respiratory Mechanisms in Different Animals:

Simple Organisms:

• **Lower Invertebrates** (sponges, coelenterates, flatworms): Simple diffusion over entire body surface

- **Earthworms**: Moist cuticle for gas exchange
- **Insects**: Tracheal tubes network for air transport

Complex Organisms:

- Aquatic Forms: Gills (branchial respiration) arthropods, molluscs, fishes
- **Terrestrial Forms**: Lungs (pulmonary respiration) amphibians, reptiles, birds, mammals
- **Amphibians**: Additional cutaneous respiration through moist skin

14.1.1 Human Respiratory System

Structure and Components:

Conducting Part (Air Transport):

- 1. External Nostrils: Opening above upper lips
- 2. **Nasal Chamber**: Through nasal passage
- 3. **Pharynx**: Common passage for food and air
- 4. **Larynx**: Cartilaginous voice box (sound production)
- 5. **Epiglottis**: Elastic flap preventing food entry into larynx
- 6. **Trachea**: Straight tube to mid-thoracic cavity
- 7. **Bronchi**: Primary → Secondary → Tertiary divisions
- 8. **Bronchioles**: Terminal bronchioles (very thin)

Respiratory/Exchange Part:

- **Alveoli**: Thin-walled, vascularized sac-like structures
- Function: Actual gas diffusion between blood and air

Support Structures:

- Cartilaginous Rings: Support trachea, bronchi, and initial bronchioles (incomplete rings)
- Pleura: Double-layered membrane covering lungs
- Pleural Fluid: Reduces friction between lung surfaces

Thoracic Chamber:

Boundaries:

• **Dorsal**: Vertebral column

• Ventral: Sternum

• Lateral: Ribs

• **Lower**: Dome-shaped diaphragm

Important Feature: Air-tight chamber where thoracic volume changes reflect in lung volume.

Functions:

Conducting Part:

- Transports atmospheric air to alveoli
- Clears foreign particles
- Humidifies air
- Brings air to body temperature

Exchange Part:

• Site of O₂ and CO₂ diffusion between blood and air

Steps in Respiration Process:

- 1. **Pulmonary Ventilation**: Breathing (air in/out)
- 2. **Gas Diffusion**: Across alveolar membrane

- 3. **Gas Transport**: By blood circulation
- 4. **Tissue Gas Exchange**: Between blood and tissues
- 5. **Cellular Respiration**: O₂ utilization and CO₂ production

14.2 MECHANISM OF BREATHING

Two Stages of Breathing:

Inspiration (Inhalation):

Mechanism: Atmospheric air drawn into lungs **Pressure Requirement**: Intra-pulmonary pressure < Atmospheric pressure

Process:

- 1. **Diaphragm Contraction**: Increases thoracic volume (antero-posterior axis)
- 2. External Intercostal Muscle Contraction: Lifts ribs and sternum (dorso-ventral axis)
- 3. **Increased Thoracic Volume**: Causes increased pulmonary volume
- 4. **Decreased Intra-pulmonary Pressure**: Forces air into lungs

Expiration (Exhalation):

Mechanism: Alveolar air released out **Pressure Requirement**: Intra-pulmonary pressure > Atmospheric pressure

Process:

- 1. **Muscle Relaxation**: Diaphragm and intercostals return to normal
- 2. **Decreased Thoracic Volume**: Reduces pulmonary volume
- 3. **Increased Intra-pulmonary Pressure**: Forces air out of lungs

Additional Features:

- Additional Muscles: Abdominal muscles can increase breathing strength
- **Normal Rate**: 12-16 breaths per minute (healthy human)
- **Assessment Tool**: Spirometer for measuring air volumes

14.2.1 Respiratory Volumes and Capacities

Primary Volumes:

1. Tidal Volume (TV):

- **Definition**: Air inspired/expired during normal respiration
- **Value**: ~500 mL
- **Per Minute**: 6000-8000 mL

2. Inspiratory Reserve Volume (IRV):

- **Definition**: Maximum air inspired after normal inspiration
- **Value**: 2500-3000 mL

3. Expiratory Reserve Volume (ERV):

- **Definition**: Maximum air expired after normal expiration
- Value: 1000-1100 mL

4. Residual Volume (RV):

- **Definition**: Air remaining after forcible expiration
- Value: 1100-1200 mL

Pulmonary Capacities:

1. Inspiratory Capacity (IC):

- Formula: TV + IRV
- **Definition**: Total air inspired after normal expiration

2. Expiratory Capacity (EC):

- Formula: TV + ERV
- **Definition**: Total air expired after normal inspiration

3. Functional Residual Capacity (FRC):

- Formula: ERV + RV
- **Definition**: Air remaining after normal expiration

4. Vital Capacity (VC):

- Formula: TV + IRV + ERV
- **Definition**: Maximum air breathed in after forced expiration

5. Total Lung Capacity (TLC):

- Formula: VC + RV = TV + IRV + ERV + RV
- **Definition**: Total air accommodated after forced inspiration

14.3 EXCHANGE OF GASES

Sites of Gas Exchange:

- 1. **Primary Site**: Alveoli (blood ↔ atmospheric air)
- 2. **Secondary Site**: Tissues (blood ↔ tissue cells)

Mechanism: Simple Diffusion

Driving Force: Pressure/concentration gradients

Factors Affecting Diffusion Rate:

1. **Pressure Gradients**: Difference in partial pressures

2. Gas Solubility: CO_2 is 20-25 times more soluble than O_2

3. **Membrane Thickness**: Thinner membranes favor diffusion

Partial Pressures:

Definition: Pressure contributed by individual gas in mixture

• Oxygen: pO₂

• Carbon Dioxide: pCO₂

Partial Pressure Values (mm Hg):

Location	pO ₂	pCO ₂	
Atmospheric Air	159	0.3	
Alveoli	104	40	
Deoxygenated Blood	40	45	
Oxygenated Blood	95	40	
Tissues	40	45	
←			

Gradients for Diffusion:

• Oxygen: Alveoli → Blood → Tissues (159 → 104 → 40)

• Carbon Dioxide: Tissues → Blood → Alveoli (45 → 40 → 0.3)

Diffusion Membrane Structure:

Three Layers:

1. Thin Squamous Epithelium: Alveolar lining

2. **Endothelium**: Alveolar capillaries

3. **Basement Substance**: Between epithelium and endothelium

Total Thickness: Less than 1 millimeter (optimal for diffusion)

14.4 TRANSPORT OF GASES

14.4.1 Transport of Oxygen

Transport Methods:

• 97%: By RBCs (as oxyhaemoglobin)

• 3%: Dissolved in plasma

Haemoglobin Characteristics:

• Color: Red

• Component: Iron-containing pigment

• Location: RBCs

• Binding Capacity: 4 oxygen molecules per haemoglobin

Oxygen-Haemoglobin Binding:

Reversible Reaction: Hb + $4O_2 \rightleftharpoons HbO_8$ (Oxyhaemoglobin)

Factors Affecting Binding:

Primary Factor: Partial pressure of O₂ (pO₂) **Secondary Factors**:

- Partial pressure of CO₂ (pCO₂)
- Hydrogen ion concentration (pH)

• Temperature

Oxygen Dissociation Curve:

Shape: Sigmoid (S-shaped) **Plot**: % Hb saturation vs pO₂ **Significance**: Shows binding/release patterns

Binding Conditions:

Favorable for Binding (Alveoli):

- High pO₂
- Low pCO₂
- Low H⁺ concentration
- Lower temperature

Favorable for Release (Tissues):

- Low pO₂
- High pCO₂
- High H⁺ concentration
- Higher temperature

Oxygen Delivery:

Normal Conditions: 100 mL oxygenated blood delivers ~5 mL O₂ to tissues

14.4.2 Transport of Carbon Dioxide

Transport Methods:

• **70%**: As bicarbonate (HCO₃⁻)

- 20-25%: By haemoglobin (carbamino-haemoglobin)
- 7%: Dissolved in plasma

Carbamino-Haemoglobin Formation:

Binding: $CO_2 + Hb \rightleftharpoons HbCO_2$ (Carbamino-haemoglobin) **Factors**:

- **High pCO₂, Low pO₂**: Promotes binding (tissues)
- Low pCO₂, High pO₂: Promotes release (alveoli)

Bicarbonate Transport:

Key Enzyme: Carbonic Anhydrase (high concentration in RBCs)

Chemical Reactions:

$$CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons HCO_3^- + H^+$$
(Carbonic Anhydrase catalyzed)

At Tissues (High pCO₂):

- CO₂ → HCO₃⁻ + H⁺ (forward reaction)
- CO₂ trapped as bicarbonate

At Alveoli (Low pCO₂):

- HCO₃⁻ + H⁺ → CO₂ + H₂O (reverse reaction)
- CO₂ released for exhalation

CO₂ Delivery:

Normal Conditions: 100 mL deoxygenated blood delivers ~4 mL CO₂ to alveoli

14.5 REGULATION OF RESPIRATION

Neural Control System:

Primary Center:

Respiratory Rhythm Centre:

• Location: Medulla region of brain

• Function: Primary regulation of breathing rhythm

• **Control**: Maintains basic respiratory pattern

Modulating Center:

Pneumotaxic Centre:

• Location: Pons region of brain

• Function: Modulates respiratory rhythm centre

• **Effect**: Reduces inspiration duration, alters respiratory rate

Chemosensitive Control:

Chemosensitive Area:

• Location: Adjacent to rhythm centre

• **Sensitivity**: Highly sensitive to CO₂ and H⁺ ions

• **Response**: Activates rhythm centre when CO₂/H⁺ increases

• **Result**: Adjustments in respiration to eliminate excess substances

Peripheral Receptors:

Location: Aortic arch and carotid artery **Function**: Detect CO₂ and H⁺ changes **Action**: Send signals to rhythm centre for corrections

Role of Oxygen:

Significance: Quite insignificant in respiratory rhythm regulation **Note**: CO₂ and H⁺ are primary regulatory factors

14.6 DISORDERS OF RESPIRATORY SYSTEM

Common Respiratory Disorders:

1. Asthma:

Symptoms: Difficulty breathing, wheezing **Cause**: Inflammation of bronchi and bronchioles **Effect**: Narrowed airways, breathing difficulty

2. Emphysema:

Type: Chronic disorder **Pathology**: Alveolar wall damage **Consequence**: Decreased respiratory surface area **Major Cause**: Cigarette smoking

3. Occupational Respiratory Disorders:

Industries Affected: Grinding, stone-breaking **Problem**: Excessive dust exposure **Consequence**: Inflammation → Fibrosis → Lung damage **Prevention**: Protective masks for workers

Health Impacts:

- **Reduced Gas Exchange**: Damaged alveolar surfaces
- **Breathing Difficulties**: Narrowed or blocked airways
- Long-term Damage: Progressive tissue damage

NEET-Specific Important Points

High-Yield Topics for NEET:

1. Respiratory System Anatomy:

- Conducting vs respiratory parts
- Pleural membranes and function
- Thoracic chamber boundaries

2. Breathing Mechanism:

- Inspiration/expiration process
- Role of diaphragm and intercostal muscles
- Pressure gradients

3. Respiratory Volumes:

- Definitions and values
- Pulmonary capacity calculations
- Clinical significance

4. Gas Exchange:

- Partial pressure gradients
- Diffusion factors
- Membrane structure

5. Gas Transport:

- Oxygen transport mechanisms
- CO₂ transport pathways
- Haemoglobin binding factors

6. **Regulation**:

• Neural control centers

- Chemical regulation
- Feedback mechanisms

Common NEET Question Patterns:

1. Numerical Problems:

- Respiratory volume calculations
- Partial pressure comparisons
- Gas transport percentages

2. Mechanism Questions:

- Breathing process steps
- Gas exchange mechanisms
- Transport pathways

3. Comparison Questions:

- Different respiratory volumes
- Gas transport methods
- Control mechanisms

4. Disorder-Related Questions:

- Symptoms and causes
- Effects on gas exchange
- Preventive measures

Memory Aids and Mnemonics

Respiratory Volumes:

"Tigers In Every Room"

- Tidal Volume
- Inspiratory Reserve Volume
- Expiratory Reserve Volume
- Residual Volume

Pulmonary Capacities:

"I Eat Five Vegetables To Live"

- Inspiratory Capacity
- **E**xpiratory Capacity
- Functional Residual Capacity
- **V**ital Capacity
- Total Lung Capacity

Gas Transport:

"Please Deliver Bicarbonate"

- Plasma (dissolved)
- **D**irect binding (carbamino-Hb)
- **B**icarbonate (major CO₂ transport)

Breathing Control Centers:

"Respiratory Pneumonia Chemo"

- **R**espiratory rhythm centre (medulla)
- **P**neumotaxic centre (pons)
- Chemosensitive area (medulla)

Practice Questions for NEET

Multiple Choice Questions:

- 1. What percentage of CO₂ is transported as bicarbonate? a) 20-25% b) 70% c) 7% d) 97%
- 2. The respiratory rhythm centre is located in: a) Pons b) Cerebrum c) Medulla d) Cerebellum
- 3. Vital capacity includes: a) TV + IRV + ERV b) TV + IRV c) ERV + RV d) All lung volumes

Numerical Problems:

- 1. If tidal volume is 500 mL and breathing rate is 15/min, calculate air moved per minute.
- 2. Calculate vital capacity if TV = 500 mL, IRV = 3000 mL, ERV = 1100 mL.

Short Answer Questions:

- 1. Explain the mechanism of inspiration.
- 2. Why is CO₂ more efficiently transported than O₂?
- 3. What is the significance of the oxygen dissociation curve?

Long Answer Questions:

- 1. Describe the complete pathway of oxygen from atmosphere to tissues.
- 2. Explain the neural regulation of respiration.
- 3. Compare the transport mechanisms of oxygen and carbon dioxide.

Application-Based Questions:

Scenario-Based Problems:

Q1: A person climbs to high altitude. What changes occur in:

• Partial pressure of gases

- Breathing rate
- Oxygen transport

Q2: During exercise, how does the body adjust:

- Breathing pattern
- Gas exchange
- Transport mechanisms

Q3: In emphysema patients:

- What structural changes occur
- How is gas exchange affected
- What compensatory mechanisms operate

Summary Table: Gas Transport Overview

Gas	Transport Method	Percentage	Location	Mechanism
O ₂	Oxyhaemoglobin	97%	RBCs	Hb-O₂ binding
O ₂	Dissolved	3%	Plasma	Simple solution
CO ₂	Bicarbonate	70%	Plasma/RBCs	Carbonic anhydrase
CO ₂	Carbamino-Hb	20-25%	RBCs	Hb-CO₂ binding
CO ₂	Dissolved	7%	Plasma	Simple solution
4	'	1	1	•

Key Values to Remember:

Respiratory Volumes (mL):

• **TV**: 500

• IRV: 2500-3000

• **ERV**: 1000-1100

• **RV**: 1100-1200

Partial Pressures (mm Hg):

• Atmospheric pO₂: 159

• Alveolar pO₂: 104

• Tissue pO₂: 40

Gas Delivery (per 100 mL blood):

• O₂ delivery: ~5 mL

• CO₂ pickup: ~4 mL

EXAM SPRINT - Master Breathing and Gas Exchange with focused study on mechanisms, transport pathways, and regulatory systems. Understanding numerical values and their significance is crucial for NEET success.

Source: NCERT Biology Class 11, Chapter 14 - Comprehensive coverage for NEET preparation