Chapter 11: Thermodynamics - Detailed Notes

ExamSprint Watermark

11.1 INTRODUCTION

Historical Context:

- Early Concept: Heat viewed as invisible fluid ("caloric") flowing from hot to cold bodies
- Benjamin Thomson (Count Rumford, 1798): Revolutionary experiment showing heat as energy form
 - Boring brass cannon generated heat proportional to work done
 - Heat production independent of drill sharpness
 - Demonstrated work-to-heat conversion

Modern Understanding:

Thermodynamics: Branch of physics dealing with heat, temperature, and energy inter-conversion

Key Characteristics:

- Macroscopic Science: Deals with bulk properties, not molecular details
- Few Variables: Uses measurable quantities (P, V, T, mass, composition)
- Historical Development: Laws formulated before molecular theory was established

Thermodynamics vs Mechanics:

Aspect	Mechanics	Thermodynamics
Focus	Motion under forces	Internal macroscopic state

Aspect	Mechanics	Thermodynamics
Energy	Kinetic energy of whole system	Internal energy of constituents
Variables	Position, velocity	Pressure, volume, temperature
▲	•	·

Practical Example:

- **Bullet fired**: Mechanical KE changes, not temperature
- **Bullet stops**: Mechanical KE → Heat, temperature increases

11.2 THERMAL EQUILIBRIUM

Thermodynamic Equilibrium:

Definition: State where macroscopic variables don't change with time

Conditions for Equilibrium:

- Fixed values of pressure, volume, temperature
- Closed system, isolated from surroundings
- No changes in mass or composition over time

Wall Types:

Adiabatic Wall:

- **Property**: Prevents heat flow
- Material: Insulating wall
- **Result**: Any (P_1, V_1) compatible with any (P_2, V_2)

Diathermic Wall:

• **Property**: Allows heat flow

• Material: Conducting wall

• Result: System variables change until equilibrium achieved

Experimental Observation:

When adiabatic wall replaced by diathermic wall:

Variables change: (P_A, V_A) → (P_A', V_A') and (P_B, V_B) → (P_B', V_B')

• Final state: Both systems in thermal equilibrium

• Characteristic: Equal temperatures in equilibrium

11.3 ZEROTH LAW OF THERMODYNAMICS

Statement:

"Two systems in thermal equilibrium with a third system separately are in thermal equilibrium with each other"

Experimental Setup:

- 1. **Stage 1**: Systems A and B separated by adiabatic wall, both in contact with system C via diathermic walls
- 2. Stage 2: A and B reach thermal equilibrium with C
- 3. Stage 3: Replace A-B adiabatic wall with diathermic wall, isolate C
- 4. **Observation**: No further change in A and B states

Mathematical Consequence:

If $T_A = T_C$ and $T_B = T_C$, then $T_A = T_B$

Physical Significance:

- Establishes temperature concept: Physical quantity equal for systems in thermal equilibrium
- Foundation for thermometry: Basis for temperature measurement
- **Transitive property**: Thermal equilibrium is transitive relation

Temperature Definition:

Temperature (T): Thermodynamic variable whose equality indicates thermal equilibrium

11.4 HEAT, INTERNAL ENERGY AND WORK

Internal Energy (U):

Microscopic Definition:

Sum of kinetic and potential energies of all molecules in the system

Key Properties:

- State Variable: Depends only on current state, not history
- Path Independent: U₂ U₁ same regardless of process path
- **Reference Frame**: Measured in frame where center of mass at rest
- Excludes: Kinetic energy of system as whole

Components:

- Translational KE: Linear motion of molecules
- Rotational KE: Rotation of molecules
- **Vibrational KE**: Vibration within molecules
- **Potential Energy**: Intermolecular interactions

Methods of Changing Internal Energy:

1. Heat Transfer (Q):

- **Mechanism**: Temperature difference between system and surroundings
- **Direction**: Hot → Cold
- **Process**: Energy in transit due to thermal contact

2. Work Transfer (W):

- **Mechanism**: Mechanical means (moving piston, compression, expansion)
- **Process**: Energy transfer without temperature difference
- **Examples**: Gas expansion, compression

Important Distinctions:

Heat vs Internal Energy:

- **Heat**: Energy in transit, not a state property
- **Internal Energy**: Energy contained in system, state property
- Meaningless: "Gas contains certain amount of heat"
- Meaningful: "Gas has certain internal energy" or "Heat supplied to gas"

Work in Thermodynamics:

• Not a state variable: Depends on process path

• **Energy transfer mode**: Mechanical energy exchange with surroundings

11.5 FIRST LAW OF THERMODYNAMICS

Statement:

Energy supplied to system goes partly to increase internal energy and partly to do work on surroundings

Mathematical Expression:

$$\Delta Q = \Delta U + \Delta W$$

Where:

- ΔQ: Heat supplied to system (positive if absorbed)
- ΔU: Change in internal energy
- **AW**: Work done by system (positive if system does work)

Alternative Form:

$$\Delta Q - \Delta W = \Delta U$$

Physical Interpretation:

General law of energy conservation applied to thermodynamic systems

Path Dependence:

- **ΔU**: Path independent (state variable)
- **ΔQ**, **ΔW**: Generally path dependent

• **ΔQ** - **ΔW**: Always path independent (equals ΔU)

Special Case - Isothermal Process:

For ideal gas: $\Delta U = 0$, therefore $\Delta Q = \Delta W$ **All heat supplied converted to work**

Work by Gas Against Constant Pressure:

$$\Delta W = P \Delta V$$

Therefore: $(\Delta Q = \Delta U + P \Delta V)$

Practical Application:

Water → Steam transition:

- Latent heat: $\Delta Q = 2256 \text{ J/g}$
- Work done: $\Delta W = P(V_{gas} V_{liquid}) = 169.2 J/g$
- Internal energy change: ΔU = 2256 169.2 = 2086.8 J/g

Most energy goes to internal energy change

11.6 SPECIFIC HEAT CAPACITY

Heat Capacity (S):

 $S = \Delta Q/\Delta T$

Specific Heat Capacity (s):

```
s = S/m = (1/m)(\Delta Q/\Delta T)
```

Units: J kg⁻¹ K⁻¹

Molar Specific Heat Capacity (C):

```
C=(1/\mu)(\Delta Q/\Delta T)
```

Where μ = number of moles **Units**: J mol⁻¹ K⁻¹

Properties:

- **Material dependent**: Different for different substances
- **Temperature dependent**: May vary with temperature
- **Process dependent**: Different values for different processes

Theoretical Prediction for Solids:

Using equipartition theorem:

```
U = 3RT (for one mole)

C = \partial U/\partial T = 3R \approx 25 J mol<sup>-1</sup> K<sup>-1</sup>
```

Water Specific Heat:

- **Historical**: 1 calorie = heat to raise 1g water by 1°C
- **Precise definition**: 14.5°C to 15.5°C
- **SI value**: 4186 J kg⁻¹ K⁻¹

• **Conversion**: 1 cal = 4.186 J

For Ideal Gas:

$$Cp - Cv = R$$

Where:

- Cp: Molar specific heat at constant pressure
- Cv: Molar specific heat at constant volume
- **R**: Universal gas constant

Derivation:

At constant volume: $(Cv = \partial U/\partial T)$ At constant pressure: $(Cp = \partial U/\partial T + R)$ Therefore: (Cp - Cv = R)

11.7 THERMODYNAMIC STATE VARIABLES AND EQUATION OF STATE

State Variables:

Macroscopic quantities that completely describe equilibrium state

Examples:

- Pressure (P)
- Volume (V)
- Temperature (T)
- Internal Energy (U)
- Mass (m)

Equilibrium vs Non-Equilibrium:

Equilibrium States:

- Well-defined state variables
- Uniform properties throughout system
- No change with time

Non-Equilibrium Examples:

- Free expansion into vacuum
- Explosive chemical reactions
- Rapid compression/expansion

Equation of State:

Relationship connecting state variables

Ideal Gas:

$$PV = \mu RT$$

Independence:

For μ fixed, only 2 variables independent (e.g., P and V determine T)

Classification of Variables:

Extensive Variables:

- **Property**: Proportional to system size
- **Examples**: Volume (V), Internal Energy (U), Total Mass (M)

• **Test**: Value halved when system divided in half

Intensive Variables:

• **Property**: Independent of system size

• **Examples**: Pressure (P), Temperature (T), Density (ρ)

• **Test**: Value unchanged when system divided in half

Consistency Check:

First Law: $\Delta Q = \Delta U + P\Delta V$

• Left side: Extensive (ΔQ)

• Right side: Extensive (ΔU) + Intensive × Extensive ($P\Delta V$) = Extensive **Dimensionally consistent**

11.8 THERMODYNAMIC PROCESSES

11.8.1 Quasi-Static Process

Definition:

Infinitely slow process where system remains in equilibrium with surroundings at every stage

Characteristics:

- System pressure ≈ External pressure (infinitesimal difference)
- System temperature ≈ Surroundings temperature
- **Reversible**: Can be turned back
- Theoretical construct: Real processes are approximations

Why Important:

- Well-defined state variables: At every instant
- Calculable: Can use equilibrium relations
- **Reversible**: Maximum efficiency possible

Special Processes:

Isothermal Process:

- **Condition**: T = constant
- **Example**: Gas expansion in large thermal reservoir
- **Ideal Gas**: PV = constant (Boyle's Law)

Isobaric Process:

- **Condition**: P = constant
- Work done: $W = P(V_2 V_1)$

Isochoric Process:

- **Condition**: V = constant
- **Work done**: W = 0
- **Heat transfer**: All goes to internal energy change

Adiabatic Process:

- **Condition**: Q = 0 (thermally insulated)
- **Ideal Gas**: PV^y = constant
- Work-Energy: $W = -\Delta U$

11.8.2 Isothermal Process

For Ideal Gas:

 $PV = \mu RT = constant$

Work Done:

 $W = \int P dV = \mu RT \ln(V_2/V_1)$

Energy Relations:

• **Internal energy**: $\Delta U = 0$ (temperature constant)

• First Law: Q = W

• Heat absorbed: Equals work done

11.8.3 Adiabatic Process

Ideal Gas Relation:

 $PV^{\gamma} = constant$

Where $\gamma = Cp/Cv$

Work Done:

 $W = \mu R(T_1 - T_2)/(\gamma - 1)$

Energy Relations:

• Heat transfer: Q = 0

• **First Law**: W = -∆U

• Work by gas: Decreases internal energy

11.8.4 Isochoric Process

Characteristics:

• **Volume**: Constant

• **Work**: W = 0

• **Energy**: All heat goes to internal energy

• **Heat capacity**: Cv determines temperature change

11.8.5 Isobaric Process

Work Done:

$$W = P(V_2 - V_1) = \mu R(T_2 - T_1)$$

Energy Distribution:

• Internal energy: Changes due to temperature change

• **Work**: P △V

• **Heat capacity**: Cp determines temperature change

11.8.6 Cyclic Process

Definition:

Process where system returns to initial state

Properties:

- **Internal energy**: $\Delta U = 0$ (state variable)
- **Net heat**: Q = W (net work done)
- **Applications**: Heat engines, refrigerators

11.9 SECOND LAW OF THERMODYNAMICS

Need for Second Law:

First Law alone insufficient to explain observed phenomena

Examples Forbidden by Second Law:

- Book jumping from table using thermal energy
- Heat flowing from cold to hot spontaneously
- 100% conversion of heat to work

Statements:

Kelvin-Planck Statement:

"No process is possible whose sole result is absorption of heat from reservoir and complete conversion into work"

Clausius Statement:

"No process is possible whose sole result is transfer of heat from colder to hotter object"

Physical Implications:

Heat Engines:

- **Efficiency**: η < 1 (never 100%)
- **Cannot**: Convert all heat input to work
- Must: Reject some heat to cold reservoir

Refrigerators:

- **COP**: Cannot be infinite
- Cannot: Move heat from cold to hot without work input
- **Must**: Consume energy to operate

Equivalence:

Both statements are completely equivalent - violation of one implies violation of the other

11.10 REVERSIBLE AND IRREVERSIBLE PROCESSES

Reversible Process:

Process that can be exactly reversed, returning both system and surroundings to original states

Requirements:

- Quasi-static: Infinitely slow
- **No dissipation**: No friction, viscosity, etc.
- **Equilibrium**: System in equilibrium at every stage

Irreversible Process:

Process that cannot be exactly reversed

Examples:

• Free expansion: Gas expanding into vacuum

• **Heat conduction**: Temperature equalization

• **Friction**: Mechanical energy → heat

• **Diffusion**: Concentration equalization

• Chemical reactions: Combustion, etc.

Causes of Irreversibility:

1. **Non-equilibrium states**: Rapid processes

2. **Dissipative effects**: Friction, viscosity, resistance

Why Reversibility Matters:

• **Maximum efficiency**: Reversible engines most efficient

• Theoretical limit: Sets upper bound on performance

• **Practical comparison**: Real processes compared to reversible ideal

Practical Reality:

Irreversibility is the rule in nature - all real processes involve some irreversibility

11.11 CARNOT ENGINE

Motivation:

What is maximum possible efficiency for heat engine operating between two thermal reservoirs?

Carnot Engine Requirements:

- **Reversible**: For maximum efficiency
- **Two reservoirs**: Hot (T₁) and cold (T₂)
- Isothermal heat exchange: To maintain reversibility
- Adiabatic temperature change: Only way to change temperature reversibly

Carnot Cycle Steps:

Step $1\rightarrow 2$: Isothermal Expansion (T₁)

- **Process**: Heat Q₁ absorbed from hot reservoir
- Work done: $W_1 \rightarrow_2 = \mu RT_1 \ln(V_2/V_1)$
- Internal energy: $\Delta U = 0$

Step $2\rightarrow 3$: Adiabatic Expansion $(T_1\rightarrow T_2)$

- **Process**: Temperature drops to T₂
- Work done: $W_2 \rightarrow_3 = \mu R(T_1 T_2)/(\gamma 1)$
- **Heat**: Q = 0

Step 3→**4: Isothermal Compression (T₂)**

- **Process**: Heat Q₂ rejected to cold reservoir
- Work done: $W_3 \rightarrow_4 = -\mu RT_2 \ln(V_3/V_4)$
- Internal energy: $\Delta U = 0$

Step $4\rightarrow 1$: Adiabatic Compression $(T_2\rightarrow T_1)$

- **Process**: Temperature rises to T₁
- Work done: $W_4 \rightarrow_1 = -\mu R(T_1 T_2)/(\gamma 1)$

• **Heat**: Q = 0

Carnot Engine Efficiency:

Net Work:

$$W = Q_1 - Q_2$$

Efficiency:

$$\eta = W/Q_1 = 1 - Q_2/Q_1$$

Using adiabatic conditions:

For adiabatic processes: $V_2/V_3 = V_1/V_4$

Therefore: $\left(\eta = 1 - T_2/T_1 \right)$

Universal Results:

Carnot's Theorem:

- 1. **No engine** can be more efficient than Carnot engine operating between same temperatures
- 2. **Efficiency independent** of working substance
- 3. **Universal relation**: $Q_1/T_1 = Q_2/T_2$ for any Carnot engine

Temperature Scale:

Carnot efficiency provides truly universal thermodynamic temperature scale

Proof of Maximum Efficiency:

Contradiction method: Assume more efficient engine exists

- Couple with Carnot refrigerator
- Net result: Heat extraction from cold reservoir with complete conversion to work
- Violates Kelvin-Planck statement
- Therefore: No engine can exceed Carnot efficiency

SUMMARY OF KEY FORMULAS

First Law:

$$\Delta Q = \Delta U + \Delta W$$

Specific Heat Relations:

```
s = (1/m)(\Delta Q/\Delta T)
C = (1/\mu)(\Delta Q/\Delta T)
Cp - Cv = R \text{ (ideal gas)}
```

Work in Different Processes:

• **General**: $W = \int P dV$

• Isobaric: W = P∆V

• **Isothermal**: $W = \mu RT \ln(V_2/V_1)$

• Adiabatic: $W = \mu R(T_1-T_2)/(\gamma-1)$

Process Relations:

• **Isothermal**: PV = constant

• **Adiabatic**: PV^v = constant

- **Isobaric**: V/T = constant
- **Isochoric**: P/T = constant

Carnot Engine:

$$\eta = 1 - T_2/T_1$$
 $Q_1/T_1 = Q_2/T_2$

ExamSprint Watermark