Chapter 13: Oscillations

Comprehensive Study Notes

Class 11 Physics - NCERT Based

EXAM SPRINT - Complete Coverage for JEE and NEET Examinations

13.1 INTRODUCTION

What is Oscillatory Motion?

Definition: Motion that repeats itself about a mean position in a to-and-fro manner.

Key Characteristics:

- Repetitive nature
- Motion about equilibrium position
- Net restoring force towards mean position
- Different from general periodic motion

Examples of Oscillatory Motion:

- Pendulum of wall clock
- Vibrating strings in musical instruments
- Boat tossing in water
- Piston in steam engine
- AC voltage variations
- Atomic vibrations in solids

Importance in Physics:

- Foundation for understanding wave phenomena
- Essential for musical instrument design
- Critical in AC circuit analysis
- Basis for understanding molecular vibrations
- Temperature-energy relationship in solids

13.2 PERIODIC AND OSCILLATORY MOTIONS

Periodic Motion

Definition: Motion that repeats itself at regular intervals of time.

Mathematical Condition:

```
f(t) = f(t + T) for all t
```

where T is the period.

Period and Frequency

Period (T):

- Smallest time interval after which motion repeats
- SI Unit: second (s)
- Special units: microseconds (µs) for fast vibrations

Frequency (ν):

```
v = 1/T
```

- Number of oscillations per unit time
- SI Unit: hertz (Hz) = s^{-1}
- Named after Heinrich Hertz

Example Calculation: Human heart beats 75 times per minute:

- Frequency = 75/60 = 1.25 Hz
- Period = 1/1.25 = 0.8 s

Displacement in Oscillations

General Definition: Change with time of any physical property under consideration.

Types of Displacement Variables:

- Position displacement (spring-mass system)
- Angular displacement (pendulum)
- Voltage variations (AC circuits)
- Pressure variations (sound waves)
- Electric/magnetic field variations (light waves)

Mathematical Representation: Simple periodic functions:

```
f(t) = A \cos \omega t

f(t) = A \sin \omega t

f(t) = A \sin \omega t + B \cos \omega t
```

Period Relationship:

```
T = 2\pi/\omega
```

Fourier's Theorem

Statement: Any periodic function can be expressed as a superposition of sine and cosine functions with suitable coefficients.

Mathematical Form:

```
f(t) = A \sin \omega t + B \cos \omega t = D \sin(\omega t + \phi)
```

where:

$$D = \sqrt{(A^2 + B^2)}$$

$$\tan \phi = B/A$$

13.3 SIMPLE HARMONIC MOTION (SHM)

Definition

Mathematical Expression:

```
x(t) = A \cos(\omega t + \phi)
```

Key Parameters:

- **A:** Amplitude (maximum displacement)
- **\omega:** Angular frequency (rad/s)
- $(\omega t + \phi)$: Phase of motion
- φ: Phase constant/initial phase

Characteristics of SHM

Amplitude (A):

- Magnitude of maximum displacement
- Always positive by convention
- Determines energy of oscillation
- Independent of ω and ϕ

Angular Frequency (ω):

$$\omega = 2\pi/T = 2\pi\nu$$

- Rate of change of phase
- SI Unit: rad/s
- Related to period and frequency

Phase ($\omega t + \varphi$):

- Determines state of motion at time t
- Complete description requires position and velocity
- Advances by 2π in one complete cycle

Phase Constant (φ):

- Phase at t = 0
- Determined by initial conditions
- Can be determined from x(0) if A is known

Types of Motion Analysis

Example Functions:

1. $\sin \omega t + \cos \omega t$

```
= \sqrt{2} \sin(\omega t + \pi/4)
```

- Simple harmonic with period $2\pi/\omega$
- Phase constant $\pi/4$

2. sin²ωt

```
= 1/2 - 1/2 cos 2ωt
```

- Periodic with period π/ω
- Not simple harmonic (equilibrium at 1/2)

3. **e⁻ωt**

- Non-periodic (monotonically decreasing)
- Cannot represent physical displacement

13.4 SHM AND UNIFORM CIRCULAR MOTION

Geometrical Connection

Key Insight: SHM is the projection of uniform circular motion on any diameter.

Mathematical Derivation: Consider particle P moving on circle of radius A with angular speed ω :

- Position vector makes angle ($\omega t + \varphi$) with x-axis
- x-projection: $x(t) = A \cos(\omega t + \phi)$
- y-projection: $y(t) = A \sin(\omega t + \phi)$

Reference Circle Method:

• Reference particle: P (moving on circle)

- Reference circle: Circle of radius A
- Projection particle: P' (on diameter)
- Both projections are SHM with phase difference $\pi/2$

Important Note: Forces in linear SHM ≠ centripetal force in circular motion

Example Applications

Case 1: Anticlockwise motion

- Initial angle: π/4
- Period: T = 4s
- $x(t) = A \cos(\pi t/2 + \pi/4)$

Case 2: Clockwise motion

- Initial angle: $\pi/2$
- Period: T = 30s
- $x(t) = B \sin(2\pi t/30) = B \cos(2\pi t/30 \pi/2)$

13.5 VELOCITY AND ACCELERATION IN SHM

Velocity in SHM

Mathematical Derivation:

```
x(t) = A \cos(\omega t + \phi)
v(t) = dx/dt = -\omega A \sin(\omega t + \phi)
```

Key Properties:

• Maximum velocity: $v_{max} = \omega A$ (at mean position)

- Zero velocity at extreme positions $(x = \pm A)$
- Phase difference: $\pi/2$ ahead of displacement
- Velocity amplitude: ωA

Acceleration in SHM

Mathematical Derivation:

```
v(t) = -\omega A \sin(\omega t + \phi)
a(t) = dv/dt = -\omega^2 A \cos(\omega t + \phi) = -\omega^2 x(t)
```

Key Properties:

- Maximum acceleration: $a_{max} = \omega^2 A$ (at extreme positions)
- Zero acceleration at mean position
- Phase difference: π ahead of displacement
- Always directed toward mean position
- Acceleration amplitude: ω²A

Phase Relationships

```
For \varphi = 0:

x(t) = A \cos \omega t

v(t) = -\omega A \sin \omega t = \omega A \cos(\omega t + \pi/2)

a(t) = -\omega^2 A \cos \omega t = \omega^2 A \cos(\omega t + \pi)
```

Phase Differences:

- v leads x by $\pi/2$
- a leads x by π

• a leads v by $\pi/2$

Numerical Example

Given: $x = 5 \cos(2\pi t + \pi/4)$, t = 1.5 s

Solutions:

- Displacement: $x = 5 \cos(3\pi + \pi/4) = -3.535 \text{ m}$
- Speed: $|v| = 5 \times 2\pi \times |\sin(3\pi + \pi/4)| = 22 \text{ m/s}$
- Acceleration: $a = -(2\pi)^2 \times (-3.535) = 140 \text{ m/s}^2$

13.6 FORCE LAW FOR SHM

Newton's Second Law Application

$$F(t) = ma(t) = -m\omega^2 x(t)$$

Hooke's Law Form:

$$F(t) = -kx(t)$$

where $k = m\omega^2$ (spring constant)

Key Relationships

$$\omega = \sqrt{(k/m)}$$
$$T = 2\pi\sqrt{(m/k)}$$

Restoring Force Characteristics

• Proportional to displacement

- Always directed toward equilibrium
- Linear relationship (linear harmonic oscillator)
- Conservative force

Spring Systems Analysis

Two Springs in Parallel:

- Each spring: force = -kx
- Total force: F = -2kx
- Effective spring constant: $k_eff = 2k$
- Period: $T = 2\pi\sqrt{(m/2k)}$

Non-linear Oscillators: Real systems may have additional terms:

- $F = -kx \alpha x^2 \beta x^3 + ...$
- More complex motion patterns
- Anharmonic oscillations

13.7 ENERGY IN SHM

Kinetic Energy

$$K = \frac{1}{2}mv^2 = \frac{1}{2}m\omega^2A^2\sin^2(\omega t + \phi)$$

$$K = \frac{1}{2}kA^2\sin^2(\omega t + \phi)$$

Properties:

- Maximum at mean position: $K_{max} = \frac{1}{2}kA^2$
- Zero at extreme positions

- Period of oscillation: T/2
- Always positive

Potential Energy

$$U = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega t + \phi)$$

Properties:

- Maximum at extreme positions: $U_{max} = \frac{1}{2}kA^2$
- Zero at mean position
- Period of oscillation: T/2
- Always positive

Total Energy

```
E = K + U = \frac{1}{2}kA^{2}[\sin^{2}(\omega t + \phi) + \cos^{2}(\omega t + \phi)]

E = \frac{1}{2}kA^{2} = constant
```

Energy Conservation:

- Total mechanical energy constant
- Energy oscillates between kinetic and potential
- Both K and U oscillate with period T/2
- Maximum energy equals initial potential or kinetic energy

Energy Transformation

- At mean position: E = K (all kinetic)
- At extremes: E = U (all potential)

- Continuous energy exchange during motion
- No energy loss in ideal SHM (no friction)

Numerical Example

Given: m = 1 kg, k = 50 N/m, A = 10 cm

At x = 5 cm:

- K.E. = $\frac{1}{2}$ m $(0.61)^2$ = 0.19 J
- P.E. = $\frac{1}{2}k(0.05)^2 = 0.0625 \text{ J}$
- Total Energy = 0.25 J

Verification:

• At maximum displacement: $E = \frac{1}{2}k(0.1)^2 = 0.25 \text{ J} \checkmark$

13.8 THE SIMPLE PENDULUM

Historical Context

Galileo's Observations:

- Chandelier oscillations in church
- Periodic nature independent of amplitude (for small angles)
- Foundation for pendulum clocks

Physical Setup

Components:

- Small bob of mass m
- Inextensible, massless string of length L

- Fixed support point
- Motion in vertical plane

Force Analysis

Forces on Bob:

- Tension T (along string)
- Weight mg (vertically downward)

Force Components:

- Radial: T mg cos θ (provides centripetal acceleration)
- Tangential: -mg sin θ (provides restoring torque)

Torque Equation

```
\tau = -L(mg \sin \theta)
```

Using $\tau = I\alpha$:

```
I\alpha = -mgL \sin \theta
```

For small angles (θ in radians):

```
\sin\thetapprox\theta
```

Simplified Equation:

```
\alpha = -(mgL/I)\theta
```

For simple pendulum: $I = mL^2$

$$\alpha = -(g/L)\theta$$

Time Period Derivation

Comparing with SHM:

$$\alpha = -\omega^2 \theta$$

Therefore:

$$ω2 = g/L$$
 $ω = \sqrt{(g/L)}$

Period Formula:

$$T = 2\pi\sqrt{(L/g)}$$

Small Angle Approximation

Validity:

θ (degrees)	θ (radians)	sin θ	Error %
5°	0.087	0.087	0.0%
10°	0.175	0.174	0.5%
15°	0.262	0.259	1.2%
20°	0.349	0.342	2.0%
▲	'	•	>

Conclusion: Approximation valid for $\theta \le 15^{\circ}$

Applications

Example: Seconds pendulum (T = 2s)

$$L = gT^2/4\pi^2 = 9.8 \times 4/4\pi^2 = 1 \text{ m}$$

SUMMARY - KEY CONCEPTS

1. Motion Classifications

- **Periodic Motion:** Repeats after time T
- Oscillatory Motion: To-and-fro about mean position
- **Simple Harmonic Motion:** Sinusoidal displacement function

2. SHM Definitions

Displacement: $x(t) = A \cos(\omega t + \phi)$ **Velocity:** $v(t) = -\omega A \sin(\omega t + \phi)$ **Acceleration:** $a(t) = -\omega^2 A \cos(\omega t + \phi) = -\omega^2 x$

3. Force Law

$$F = -kx = -m\omega^2 x$$

4. Energy Relations

- **Kinetic:** $K = \frac{1}{2}mv^2 = \frac{1}{2}kA^2sin^2(\omega t + \varphi)$
- **Potential:** $U = \frac{1}{2}kx^2 = \frac{1}{2}kA^2\cos^2(\omega t + \phi)$
- **Total:** $E = K + U = \frac{1}{2}kA^2 = constant$

5. Simple Pendulum

 $T = 2\pi\sqrt{(L/g)}$ (for small angles)

POINTS TO PONDER - CRITICAL INSIGHTS

1. Period Independence

- SHM period independent of amplitude or energy
- Only depends on system parameters (m, k, L, g)
- Contrast with planetary motion (Kepler's third law)

2. Phase Relationships

- Velocity leads displacement by $\pi/2$
- Acceleration leads displacement by π
- Both kinetic and potential energy oscillate with period T/2

3. Reference Circle Connection

- SHM as projection of circular motion
- Different force systems despite mathematical similarity
- Useful for visualization and problem-solving

4. Energy Conservation

- Total mechanical energy constant in ideal SHM
- Continuous transformation between K.E. and P.E.
- Energy proportional to amplitude squared

5. Small Angle Approximation

- Critical for simple pendulum analysis
- $\sin \theta \approx \theta$ valid for $\theta \le 15^{\circ}$
- Larger angles lead to non-harmonic motion

6. Initial Conditions

- Two initial conditions determine SHM completely
- Common sets: (x_0, v_0) , (A, ϕ) , (E, ϕ)
- Phase constant determined by initial state

JEE/NEET SPECIFIC IMPORTANT POINTS

High-Yield Topics

1. SHM Equations and Relationships

Master these formulas:

```
x = A \cos(\omega t + \varphi)
v = -\omega A \sin(\omega t + \varphi)
a = -\omega^2 A \cos(\omega t + \varphi)
\omega = \sqrt{(k/m)} = 2\pi/T
E = \frac{1}{2}kA^2 = \frac{1}{2}m\omega^2 A^2
```

2. Spring-Mass Systems

Key scenarios:

- Single spring vertical/horizontal
- Two springs in series/parallel
- Variable mass problems

• Energy analysis

3. Simple Pendulum

Standard problems:

- Period calculation
- Length determination
- Gravity variation effects
- Small angle validity

4. Energy Analysis

Critical concepts:

- Energy conservation
- K.E. and P.E. variations
- Maximum speed and acceleration points
- Energy-amplitude relationships

Common Question Types

1. Direct Application Problems

- Given amplitude, frequency → find displacement at time t
- Given spring constant, mass → find period
- Energy calculations at different positions

2. Graphical Analysis

• Sketch x-t, v-t, a-t graphs

- Interpret phase relationships
- Calculate areas and slopes

3. System Analysis

- Multiple spring arrangements
- Pendulum with varying parameters
- Energy transformation problems

4. Comparative Studies

- SHM vs circular motion
- Different oscillating systems
- Effect of parameter changes

Problem-Solving Strategy

1. Identification Phase

- Recognize SHM from given conditions
- Identify system parameters (m, k, L, g)
- Determine initial conditions

2. Setup Phase

- Choose appropriate SHM equation
- $\bullet \;$ Apply initial conditions to find A and ϕ
- Set up coordinate system consistently

3. Calculation Phase

- Substitute known values
- Use appropriate relationships
- Check dimensional consistency

4. Verification Phase

- Verify physical reasonableness
- Check limiting cases
- Ensure energy conservation

MEMORY AIDS AND MNEMONICS

SHM Equations

"X-V-A Sequence"

- $X = A \cos(\omega t + \phi)$
- $V = -\omega A \sin(\omega t + \phi)$ [derivative of X]
- $A = -\omega^2 A \cos(\omega t + \phi)$ [derivative of V]

Phase Relationships

"V-A Lead X"

- Velocity leads displacement by $\pi/2$
- Acceleration leads displacement by π
- Acceleration leads velocity by $\pi/2$

Energy Relations

"K-U Dance"

- When K is max, U is min (at mean position)
- When U is max, K is min (at extremes)
- Total energy = max K = max U

Pendulum Formula

"Length over Gravity"

$$T=2\pi\sqrt{(L/g)}$$

Remember: Period increases with length, decreases with gravity

PRACTICE PROBLEMS FOR JEE/NEET

Level 1: Basic Application

Problem 1: A particle executes SHM with amplitude 5 cm and period 4 s. Find: (a) Maximum velocity (b) Maximum acceleration

Solution:

- $\omega = 2\pi/T = \pi/2 \text{ rad/s}$
- $v_{max} = \omega A = (\pi/2) \times 0.05 = 0.0785 \text{ m/s}$
- $a_{max} = \omega^2 A = (\pi^2/4) \times 0.05 = 0.123 \text{ m/s}^2$

Problem 2: A spring-mass system has k = 100 N/m and m = 0.5 kg. Find the period of oscillation.

Solution:

$$T = 2\pi\sqrt{(m/k)} = 2\pi\sqrt{(0.5/100)} = 2\pi\sqrt{(0.005)} = 0.445 s$$

Level 2: Intermediate

Problem 3: A simple pendulum has period 2 s on earth. What will be its period on moon where $g = 1.6 \text{ m/s}^2$?

Solution:

- On earth: $T_1 = 2\pi\sqrt{(L/g_1)}$
- On moon: $T_2 = 2\pi\sqrt{(L/g_2)}$
- $T_2/T_1 = \sqrt{(g_1/g_2)} = \sqrt{(9.8/1.6)} = 2.47$
- $T_2 = 2 \times 2.47 = 4.94 \text{ s}$

Problem 4: In SHM, when displacement is half the amplitude, find the ratio of kinetic to potential energy.

Solution:

- At x = A/2: $U = \frac{1}{2}k(A/2)^2 = \frac{1}{8}kA^2$
- Total energy: $E = \frac{1}{2}kA^2$
- $K = E U = \frac{1}{2}kA^2 \frac{1}{8}kA^2 = \frac{3}{8}kA^2$
- $K/U = (\frac{3}{8}kA^2)/(\frac{1}{8}kA^2) = 3$

Level 3: Advanced

Problem 5: Two identical springs (k each) are connected to a mass m: (a) in series (b) in parallel. Compare the periods.

Solution:

- Series: $k_eff = k/2 \rightarrow T_1 = 2\pi\sqrt{(2m/k)}$
- Parallel: $k_eff = 2k \rightarrow T_2 = 2\pi\sqrt{(m/2k)}$

• $T_1/T_2 = \sqrt{(2m/k)} \times \sqrt{(2k/m)} = 2$

ADVANCED TOPICS FOR JEE

1. Damped Oscillations

- Exponential decay of amplitude
- Quality factor and damping coefficient
- Critical, under, and over damping

2. Forced Oscillations

- External periodic driving force
- Resonance phenomena
- Amplitude and phase response

3. Coupled Oscillations

- Two-mass spring systems
- Normal modes of vibration
- Beat phenomena

4. Non-linear Oscillations

- Anharmonic terms in restoring force
- Period dependence on amplitude
- Approximate solution methods

ERROR ANALYSIS IN OSCILLATIONS

Common Mistakes

1. Phase Confusion

- Wrong initial phase determination
- Incorrect phase relationships
- Sign errors in trigonometric functions

2. Energy Calculations

- Forgetting factor of ½ in energy expressions
- Wrong energy conservation applications
- Mixing kinetic and potential energy concepts

3. Period Formulas

- Confusing different system formulas
- Wrong parameter identification
- Unit conversion errors

Prevention Strategies

- 1. Always draw clear diagrams with coordinate systems
- 2. List all given parameters systematically
- 3. Check energy conservation at key points
- 4. Verify dimensional consistency of all equations

EXPERIMENTAL CONNECTIONS

1. Historical Experiments

- Galileo's pendulum observations
- Hooke's spring law investigations
- Development of mechanical clocks

2. Modern Applications

- Seismic monitoring systems
- Precision timing devices
- Structural vibration analysis

3. Laboratory Techniques

- Digital oscilloscopes for SHM visualization
- Motion sensors for real-time data
- Computer modeling of oscillatory systems

EXAM SPRINT - FINAL CHECKLIST

Essential Formulas to Remember

```
x = A \cos(\omega t + \phi)
v = -\omega A \sin(\omega t + \phi)
a = -\omega^2 x
\omega = \sqrt{(k/m)} = 2\pi/T
E = \frac{1}{2}kA^2
T_pendulum = 2\pi\sqrt{(L/g)}
```

Key Concepts to Master

- 1. SHM definition and characteristics
- 2. Energy conservation in oscillations
- 3. Phase relationships between x, v, a
- 4. Simple pendulum motion
- 5. Spring-mass system analysis

Problem-Solving Priorities

- 1. Identify SHM conditions
- 2. Apply initial conditions correctly
- 3. Use energy conservation
- 4. Verify answers physically

EXAM SPRINT - Master Oscillations through focused study of SHM equations, energy analysis, and pendulum motion. Regular practice of numerical problems and conceptual understanding is essential for JEE/NEET success.

Source: NCERT Physics Class 11, Chapter 13 - Comprehensive coverage for competitive exam preparation