Chapter 3: Motion in a Plane

Comprehensive Study Notes

Class 11 Physics - NCERT Based

EXAM SPRINT - Complete Coverage for JEE and NEET Examinations

3.1 INTRODUCTION

What is Motion in a Plane?

Definition: Motion of objects in two dimensions, requiring vector analysis for complete description.

Key Characteristics:

- Extension of one-dimensional motion concepts
- Requires vector quantities for position, displacement, velocity, acceleration
- Directional aspects cannot be handled by simple +/- signs
- Foundation for projectile motion and circular motion

Examples of Plane Motion:

- Projectile motion (ball thrown at angle)
- Circular motion (satellite orbits)
- Vehicle motion on curved paths
- Sports ball trajectories

Motion Analysis Framework

Two-Dimensional Approach:

• Motion treated as combination of two perpendicular one-dimensional motions

• Independent analysis along x and y axes

Vector addition for resultant quantities

3.2 SCALARS AND VECTORS

Scalar Quantities

Definition: Quantities with magnitude only **Examples**: Distance, speed, mass, temperature, time, energy **Mathematical Operations**: Follow ordinary algebra rules

• Addition: 5 m + 3 m = 8 m

• Multiplication: $2 \text{ kg} \times 3 = 6 \text{ kg}$

Vector Quantities

Definition: Quantities with both magnitude and direction, obeying triangle/parallelogram law of addition **Examples**: Displacement, velocity, acceleration, force **Notation**:

• Bold face: **v**

Arrow notation: v□ (handwritten) Magnitude: |v| = v

Position and Displacement Vectors

Position Vector:

• **r** = OP□ from origin O to point P

• Components: $\mathbf{r} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}}$

• Magnitude: $|\mathbf{r}| = \sqrt{(x^2 + y^2)}$

Displacement Vector:

• $\Delta \mathbf{r} = \mathbf{r}' - \mathbf{r}$ (straight line from initial to final position)

- **Key Property**: Independent of actual path taken
- Always points from initial to final position

Equality of Vectors

Condition: Two vectors equal if and only if:

- 1. Same magnitude
- 2. Same direction **Mathematical**: $\mathbf{A} = \mathbf{B} \Leftrightarrow |\mathbf{A}| = |\mathbf{B}|$ and direction(A) = direction(B)

3.3 MULTIPLICATION OF VECTORS BY REAL NUMBERS

Scalar Multiplication Rules

Positive Scalar $\lambda > 0$:

- $\lambda \mathbf{A}$ has magnitude $\lambda |\mathbf{A}|$
- Same direction as A
- Example: 3A is three times longer, same direction

Negative Scalar $-\lambda < 0$:

- $|-\lambda \mathbf{A}| = \lambda |\mathbf{A}|$
- Opposite direction to A
- Example: -2**A** is twice as long, opposite direction

Physical Interpretation:

- If λ has dimensions: $[\lambda \mathbf{A}] = [\lambda] \times [\mathbf{A}]$
- Example: velocity × time = displacement

3.4 ADDITION AND SUBTRACTION OF VECTORS

Graphical Methods

Triangle Method (Head-to-Tail):

- 1. Place tail of second vector at head of first
- 2. Resultant connects tail of first to head of second
- 3. R = A + B

Parallelogram Method:

- 1. Place both vectors at common origin
- 2. Complete parallelogram
- 3. Diagonal represents resultant

Vector Addition Laws

Commutative Law: A + B = B + A Associative Law: (A + B) + C = A + (B + C)

Null Vector

Definition: Vector with zero magnitude **Properties**:

- A + 0 = A
- $\lambda \mathbf{0} = \mathbf{0}$
- 0A = 0
- Direction undefined due to zero magnitude

Vector Subtraction

Definition: A - B = A + (-B) **Method**: Add negative of second vector to first

3.5 RESOLUTION OF VECTORS

Component Resolution

Process: Express vector as sum of component vectors along chosen directions **Mathematical**: $\mathbf{A} = \lambda \mathbf{a} + \mu \mathbf{b}$ (where \mathbf{a} , \mathbf{b} are reference vectors)

Unit Vectors

Definition: Vector of unit magnitude pointing in specific direction **Standard Unit Vectors**:

- î: along positive x-axis
- ĵ: along positive y-axis
- $\hat{\mathbf{k}}$: along positive z-axis **Properties**: $|\hat{\mathbf{i}}| = |\hat{\mathbf{j}}| = |\hat{\mathbf{k}}| = 1$

Rectangular Components

Two Dimensions:

- $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$
- $A_x = A \cos \theta$ (x-component)
- $A_y = A \sin \theta$ (y-component)
- $|\mathbf{A}| = \sqrt{(A_x^2 + A_y^2)}$
- $\tan \theta = A_v/A_x$

Three Dimensions:

- $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_i \hat{\mathbf{k}}$
- $|\mathbf{A}| = \sqrt{(A_x^2 + A_y^2 + A_i^2)}$

3.6 VECTOR ADDITION - ANALYTICAL METHOD

Component Addition

For vectors: $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$, $\mathbf{B} = B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}}$ Resultant: $\mathbf{R} = \mathbf{A} + \mathbf{B} = (A_x + B_x) \hat{\mathbf{i}} + (A_y + B_y) \hat{\mathbf{j}}$

Component Rules:

- $\bullet \quad R_x = A_x + B_x$
- $R_v = A_v + B_v$
- $|\mathbf{R}| = \sqrt{(R_x^2 + R_y^2)}$

Law of Cosines and Sines

For two vectors A, B with angle θ between them:

Magnitude: $|\mathbf{R}|^2 = A^2 + B^2 + 2AB \cos \theta$

Direction: $\sin \alpha / B = \sin \theta / |\mathbf{R}|$ (where α is angle R makes with A)

3.7 MOTION IN A PLANE

Position Vector and Displacement

Position: $\mathbf{r}(t) = \mathbf{x}(t)\hat{\mathbf{i}} + \mathbf{y}(t)\hat{\mathbf{j}}$ **Displacement**: $\Delta \mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 = \Delta \mathbf{x}\hat{\mathbf{i}} + \Delta \mathbf{y}\hat{\mathbf{j}}$

Velocity in Two Dimensions

Average Velocity: $\bar{\mathbf{v}} = \Delta \mathbf{r}/\Delta t = (\Delta \mathbf{x}/\Delta t)\hat{\mathbf{i}} + (\Delta \mathbf{y}/\Delta t)\hat{\mathbf{j}}$

Instantaneous Velocity: $\mathbf{v} = \lim(\Delta t \to 0) \Delta \mathbf{r}/\Delta t = d\mathbf{r}/dt \mathbf{v} = (dx/dt)\hat{\mathbf{i}} + (dy/dt)\hat{\mathbf{j}} = v_x\hat{\mathbf{i}} + v_y\hat{\mathbf{j}}$

Properties:

• Always tangent to path

• Magnitude: $|\mathbf{v}| = \sqrt{(v_x^2 + v_y^2)}$

• Direction: $\tan \theta = v_v/v_x$

Acceleration in Two Dimensions

Average Acceleration: $\bar{a} = \Delta v/\Delta t = (\Delta v_x/\Delta t)\hat{i} + (\Delta v_y/\Delta t)\hat{j}$

Instantaneous Acceleration: $\mathbf{a} = \lim(\Delta t \to 0) \Delta \mathbf{v}/\Delta t = d\mathbf{v}/dt \mathbf{a} = (d\mathbf{v}_x/dt)\mathbf{\hat{i}} + (d\mathbf{v}_y/dt)\mathbf{\hat{j}} = a_x\mathbf{\hat{i}} + a_y\mathbf{\hat{j}}$

Key Point: Direction of **a** can be at any angle to **v** (0° to 180°)

3.8 MOTION IN A PLANE WITH CONSTANT ACCELERATION

Kinematic Equations for 2D Motion

For constant acceleration $\mathbf{a} = \mathbf{a}_{\mathbf{x}} \hat{\mathbf{i}} + \mathbf{a}_{\mathbf{y}} \hat{\mathbf{j}}$:

Velocity Equations:

- $v_x = v_{0x} + a_x t$
- $v_v = v_{0v} + a_v t$
- $\mathbf{v} = \mathbf{v_0} + \mathbf{at}$

Position Equations:

- $x = x_0 + v_{0x}t + \frac{1}{2}a_xt^2$
- $y = y_0 + v_{0y}t + \frac{1}{2}a_yt^2$
- $\mathbf{r} = \mathbf{r_0} + \mathbf{v_0} t + \frac{1}{2} a t^2$

Key Principle: Motion in perpendicular directions can be treated independently

Example Analysis

Problem: Particle with $\mathbf{v_0} = 5\hat{\mathbf{i}}$ m/s, $\mathbf{a} = (3\hat{\mathbf{i}} + 2\hat{\mathbf{j}})$ m/s²

Solution Process:

- 1. Identify components: $v_{0x} = 5 \text{ m/s}$, $v_{0y} = 0$, $a_x = 3 \text{ m/s}^2$, $a_y = 2 \text{ m/s}^2$
- 2. Apply equations: $x = 5t + 1.5t^2$, $y = t^2$
- 3. Find velocity: $\mathbf{v} = (5 + 3t)\hat{\mathbf{i}} + 2t\hat{\mathbf{j}}$

3.9 PROJECTILE MOTION

Basic Setup

Definition: Motion of object under gravity alone (neglecting air resistance)

Initial Conditions:

- Launch velocity: $\mathbf{v_0} = \mathbf{v_0} \cos \theta_0 \hat{\mathbf{i}} + \mathbf{v_0} \sin \theta_0 \hat{\mathbf{j}}$
- Launch angle: θ_0 with horizontal
- Acceleration: $\mathbf{a} = -g\hat{\mathbf{j}}$ (downward)

Component Analysis

Horizontal Motion $(a_x = 0)$:

- $v_x = v_0 \cos \theta_0$ (constant)
- $x = (v_0 \cos \theta_0)t$

Vertical Motion $(a_y = -g)$:

- $v_{\gamma} = v_0 \sin \theta_0 gt$
- $y = (v_0 \sin \theta_0)t \frac{1}{2}gt^2$

Trajectory Equation

Path Shape: Parabola **Equation**: $y = x \tan \theta_0 - (gx^2)/(2v_0^2 \cos^2 \theta_0)$

Key Results

Time of Flight: $T_F = (2v_0 \sin \theta_0)/g$

Maximum Height: $h_m = (v_0^2 \sin^2 \theta_0)/(2g)$

Range: $R = (v_0^2 \sin 2\theta_0)/g$

Maximum Range: Occurs at $\theta_0 = 45^\circ$, $R_{max} = v_0^2/g$

Important Properties

- 1. **Symmetry**: Time to reach max height = time to fall from max height
- 2. **Equal ranges**: For angles θ and $(90^{\circ} \theta)$
- 3. **Independence**: Horizontal and vertical motions are independent

Solved Examples

Example 1: Ball thrown at 28 m/s, 30° above horizontal

- Maximum height: $h_m = (28^2 \sin^2 30^\circ)/(2 \times 9.8) = 10.0 \text{ m}$
- Time of flight: $T_F = (2 \times 28 \times \sin 30^\circ)/9.8 = 2.9 \text{ s}$
- Range: $R = (28^2 \sin 60^\circ)/9.8 = 69 \text{ m}$

Example 2: Stone thrown horizontally from 490 m height at 15 m/s

- Time to hit ground: $490 = \frac{1}{2}gt^2 \rightarrow t = 10 s$
- Final velocity: $v_x = 15 \text{ m/s}$, $v_y = -98 \text{ m/s}$
- Speed on impact: $|\mathbf{v}| = \sqrt{(15^2 + 98^2)} = 99 \text{ m/s}$

3.10 UNIFORM CIRCULAR MOTION

Definition and Characteristics

Uniform Circular Motion: Object moving in circle with constant speed

- Speed constant, velocity direction continuously changing
- Always experiences acceleration toward center

Centripetal Acceleration

Derivation: Using limiting process as $\Delta t \rightarrow 0$ **Magnitude**: $a^c = v^2/R$ **Direction**: Always toward center of circle **Alternative Form**: $a^c = \omega^2 R$

Angular Quantities

Angular Displacement: θ (radians) **Angular Speed**: $\omega = d\theta/dt = 2\pi/T = 2\pi\nu$ **Relationships**:

- $v = \omega R$ (linear speed)
- $T = 2\pi/\omega$ (period)
- v = 1/T (frequency)

Acceleration Analysis

Key Points:

- 1. Magnitude of acceleration constant: $|\mathbf{a}| = v^2/R$
- 2. Direction continuously changing (always toward center)
- 3. **a** is NOT a constant vector (direction changes)
- 4. **a** ⊥ **v** always

Example Problem

Insect in circular groove: R = 12 cm, 7 revolutions in 100 s

- Angular speed: $\omega = 2\pi \times 7/100 = 0.44 \text{ rad/s}$
- Linear speed: $v = \omega R = 5.3$ cm/s
- Acceleration magnitude: $a = \omega^2 R = 2.3 \text{ cm/s}^2$

SUMMARY - KEY CONCEPTS

1. Vector Fundamentals

- **Scalars**: Magnitude only (distance, speed, mass)
- **Vectors**: Magnitude + direction (displacement, velocity, acceleration)
- **Operations**: Follow specific vector algebra rules

2. Vector Representation

- Unit vectors: î, ĵ, k for coordinate directions
- Components: $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_i \hat{\mathbf{k}}$
- Magnitude: $|A| = \sqrt{(A_x^2 + A_y^2 + A_i^2)}$

3. Motion Analysis

- Position: $\mathbf{r}(t) = \mathbf{x}(t)\hat{\mathbf{i}} + \mathbf{y}(t)\hat{\mathbf{j}}$
- **Velocity**: **v** = d**r**/dt (tangent to path)
- Acceleration: a = dv/dt

4. Kinematic Equations (Constant Acceleration)

• $\mathbf{v} = \mathbf{v_0} + \mathbf{at}$

- $\mathbf{r} = \mathbf{r_0} + \mathbf{v_0} t + \frac{1}{2} \mathbf{a} t^2$
- Component-wise application

5. Projectile Motion

- **Horizontal**: Uniform motion $(a_x = 0)$
- **Vertical**: Uniformly accelerated motion $(a_v = -g)$
- **Trajectory**: Parabolic path
- **Key formulas**: Range, maximum height, time of flight

6. Circular Motion

- **Centripetal acceleration**: $a^c = v^2/R$ toward center
- Angular speed: $\omega = v/R = 2\pi/T$
- Always accelerated (direction of v changing)

POINTS TO PONDER - CRITICAL INSIGHTS

1. Vector vs Scalar Distinction

- Vectors need both magnitude and direction specification
- Vector addition ≠ algebraic addition
- Direction matters in all vector operations

2. Independence Principle

- Perpendicular components of motion are independent
- Horizontal motion unaffected by vertical motion in projectile motion
- Allows separate analysis of x and y components

3. Acceleration Misconceptions

- **Zero velocity** ≠ **zero acceleration** (ball at max height)
- Acceleration can be perpendicular to velocity (circular motion)
- Constant speed ≠ constant velocity (direction can change)

4. Circular Motion Insights

- **Uniform** refers to constant speed, not constant velocity
- Always accelerated motion due to direction change
- Centripetal acceleration is not constant vector (magnitude constant, direction changing)

5. Projectile Motion Key Points

- Parabolic trajectory for all projectile motion
- 45° gives maximum range for given launch speed
- **Complementary angles** give equal ranges
- Time of flight depends only on vertical motion

JEE/NEET SPECIFIC IMPORTANT POINTS

High-Yield Topics

1. Vector Operations

Master these skills:

- Component resolution: $\mathbf{A} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}$
- Vector addition: R = A + B
- Magnitude calculation: $|\mathbf{R}| = \sqrt{(R_x^2 + R_y^2)}$
- Direction finding: $\tan \theta = R_v/R_x$

2. Projectile Motion Analysis

Standard scenarios:

- Object projected at angle θ
- Object dropped from height
- Object thrown horizontally
- Maximum range problems

Key formulas to memorize:

- Range: $R = (v_0^2 \sin 2\theta)/g$
- Max height: $h_m = (v_0^2 \sin^2 \theta)/(2g)$
- Time of flight: $T = (2v_0 \sin \theta)/g$

3. Circular Motion

Applications:

- Centripetal acceleration: $a^c = v^2/R = \omega^2 R$
- Banking of roads
- Vertical circular motion
- Satellite motion basics

4. Relative Motion in 2D

Vector relationships:

- $v_{12} = v_1 v_2$
- Rain-umbrella problems
- River crossing problems

Common Question Types

1. Direct Application Problems

- Vector addition/subtraction
- Component resolution
- Projectile motion calculations
- Circular motion parameters

2. Graphical Problems

- Trajectory sketching
- Component vs time graphs
- Vector diagram construction

3. Multi-Stage Problems

- Projectile motion with obstacles
- Combined linear and circular motion
- Motion in different reference frames

4. Real-World Applications

- Sports ball trajectories
- Vehicle motion on curved roads
- Satellite and planetary motion

PROBLEM-SOLVING STRATEGY

1. Setup Phase

- Choose coordinate system (origin and axes)
- **Identify vector quantities** (position, velocity, acceleration)
- Resolve into components if needed
- List given and required quantities

2. Analysis Phase

- Apply appropriate equations:
 - Constant acceleration: kinematic equations
 - Circular motion: centripetal acceleration
 - Projectile motion: separate x,y analysis
- Work with components independently
- Maintain sign conventions

3. Calculation Phase

- Substitute values with correct signs
- Solve algebraically first, then numerically
- Check dimensional consistency
- Calculate magnitude and direction for vectors

4. Verification Phase

- Physical reasonableness check
- Verify signs and magnitudes

- Check limiting cases
- Units consistency

MEMORY AIDS AND MNEMONICS

Vector Components

"SOH-CAH-TOA"

- $A_x = A \cos \theta$ (Adjacent/Hypotenuse)
- $A_y = A \sin \theta$ (Opposite/Hypotenuse)

Projectile Motion

"Rise-Run-Range"

- Rise: $h_m = (v_0^2 \sin^2 \theta)/(2g)$
- Run: $T = (2v_0 \sin \theta)/q$
- Range: $R = (v_0^2 \sin 2\theta)/g$

Circular Motion

"Speed-Round-Center"

- Speed: $v = \omega R$
- Round: $T = 2\pi/\omega$
- Center: $a^c = v^2/R$

PRACTICE PROBLEMS FOR JEE/NEET

Level 1: Basic Application

Problem 1: Vector $\mathbf{A} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}$, $\mathbf{B} = 2\hat{\mathbf{i}} - 3\hat{\mathbf{j}}$. Find $\mathbf{A} + \mathbf{B}$ and $|\mathbf{A} + \mathbf{B}|$.

Solution:

•
$$\mathbf{A} + \mathbf{B} = (3+2)\hat{\mathbf{i}} + (4-3)\hat{\mathbf{j}} = 5\hat{\mathbf{i}} + \hat{\mathbf{j}}$$

•
$$|\mathbf{A} + \mathbf{B}| = \sqrt{(5^2 + 1^2)} = \sqrt{26}$$

Problem 2: Projectile launched at 20 m/s, 60° above horizontal. Find maximum height.

Solution:

•
$$h_m = (v_0^2 \sin^2 \theta)/(2g) = (20^2 \times \sin^2 60^\circ)/(2 \times 10) = (400 \times 0.75)/20 = 15 \text{ m}$$

Level 2: Intermediate

Problem 3: Rain falls vertically at 10 m/s. Wind blows horizontally at 6 m/s. At what angle should umbrella be held?

Solution:

- Resultant velocity makes angle θ with vertical
- $\tan \theta = 6/10 = 0.6$
- $\theta = \tan^{-1}(0.6) \approx 31^{\circ}$

Problem 4: Particle in uniform circular motion, radius 2 m, period 4 s. Find centripetal acceleration.

Solution:

•
$$\omega = 2\pi/T = 2\pi/4 = \pi/2 \text{ rad/s}$$

•
$$a^c = \omega^2 R = (\pi/2)^2 \times 2 = \pi^2/2 \approx 4.9 \text{ m/s}^2$$

Level 3: Advanced

Problem 5: Projectile launched from 100 m height horizontally at 30 m/s. Find range and impact velocity.

Solution:

- Time to hit ground: $100 = \frac{1}{2}gt^2 \rightarrow t = \sqrt{(200/10)} = \sqrt{20} s$
- Range: $R = v_0 t = 30\sqrt{20} \approx 134 \text{ m}$
- Impact velocity: $v_x = 30$ m/s, $v_y = gt = 10\sqrt{20} \approx 44.7$ m/s
- $|\mathbf{v}| = \sqrt{(30^2 + 44.7^2)} \approx 54 \text{ m/s}$

ADVANCED TOPICS FOR JEE

1. Variable Acceleration

- Non-uniform motion in 2D
- **Integration approach** for complex motion
- Piece-wise analysis for changing conditions

2. Relative Motion Applications

- Rain and wind problems
- River crossing scenarios
- Motion in accelerated reference frames

3. Advanced Projectile Motion

- Projectile on inclined plane
- Motion with air resistance
- Trajectory optimization problems

4. Complex Circular Motion

- Vertical circular motion
- Banking of curves

• Combination of motions

ERROR ANALYSIS IN 2D MOTION

Common Mistakes

1. Vector Addition Errors

- Adding magnitudes instead of vectors
- Wrong component calculation
- Forgetting direction in final answer

2. Projectile Motion Errors

- Using wrong sign for gravity
- Confusing horizontal and vertical components
- Applying vertical motion equations to horizontal motion

3. Circular Motion Confusion

- Thinking uniform circular motion has no acceleration
- Confusing centripetal with tangential acceleration
- Wrong direction for centripetal acceleration

Prevention Strategies

- 1. Always draw vector diagrams
- 2. Set up coordinate system clearly
- 3. Work with components systematically
- 4. Check physical reasonableness of answers

EXPERIMENTAL CONNECTIONS

1. Projectile Motion Experiments

- Ball trajectory tracking
- Optimal angle determination
- Effect of initial conditions

2. Circular Motion Studies

- Centripetal force measurement
- Period and frequency relationships
- Banking angle optimization

3. Vector Addition Verification

- Force table experiments
- Resultant vector measurement
- Graphical vs analytical comparison

EXAM SPRINT - FINAL CHECKLIST

Master These Concepts:

- ✓ Vector addition and subtraction
- ✓ Component resolution and magnitude calculation
- ✓ Projectile motion formulas and applications
- ✓ Circular motion relationships
- ✓ Motion analysis in 2D coordinate systems

Key Formulas to Memorize:

- $\sqrt{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}}, |\mathbf{A}| = \sqrt{(A_x^2 + A_y^2)}$
- $\sqrt{R} = (v_0^2 \sin 2\theta)/g$, $h_m = (v_0^2 \sin^2 \theta)/(2g)$
- $\sqrt{a^c} = v^2/R = \omega^2 R$, $v = \omega R$

Problem-Solving Steps:

- ✓ Set coordinate system
- ✓ Resolve into components
- ✓ Apply equations independently to x,y
- ✓ Combine results vectorially
- ✓ Verify physical reasonableness

EXAM SPRINT - Master Motion in a Plane through systematic study of vector concepts, projectile motion analysis, and circular motion principles. Focus on component-wise analysis and vector addition techniques for JEE/NEET success.

Source: NCERT Physics Class 11, Chapter 3 - Comprehensive coverage for competitive exam preparation