Chapter 8: Mechanical Properties of Solids - Detailed Notes

ExamSprint Watermark

8.1 INTRODUCTION

Real vs Ideal Bodies:

- **Rigid Body (Idealized)**: Hard solid object with definite shape and size that doesn't deform
- Real Bodies: Can be stretched, compressed, and bent under sufficient external forces
- Even steel bars deform when large forces are applied

Key Material Properties:

1. Elasticity

- **Definition**: Property by which a body tends to regain its original size and shape when applied force is removed
- **Elastic Deformation**: Temporary deformation that is recoverable
- **Example**: Helical spring returns to original length when released

2. Plasticity

- **Definition**: Property where body gets permanently deformed and doesn't return to original shape
- Plastic Deformation: Permanent, non-recoverable deformation
- **Examples**: Putty, mud (close to ideal plastics)

Engineering Applications:

Understanding elastic behavior is crucial for:

- Building design (steel, concrete properties)
- Bridge construction
- Automobile manufacturing
- Aerospace engineering (lightweight but strong materials)
- Artificial limb design
- Railway track design (I-beam shape)

Material Selection Questions:

- Why is glass brittle while brass is not?
- Why do railway tracks have I-shaped cross-sections?
- How to design lightweight but sufficiently strong structures?

8.2 STRESS AND STRAIN

Fundamental Concepts:

Stress

Definition: Restoring force developed per unit area when a body is deformed

```
Stress (\sigma) = Force (F) / Area (A)

\sigma = F/A
```

Units: N/m² or Pascal (Pa) **Dimensions**: [ML⁻¹T⁻²]

Strain

Definition: Fractional change in dimension of a body due to applied force

Characteristics:

- Strain is dimensionless (ratio of similar quantities)
- No units
- Measures relative deformation

Types of Stress and Strain:

1. Longitudinal Stress and Strain

Tensile Stress:

- Applied forces stretch the body (pull apart)
- Forces perpendicular to cross-sectional area
- Body elongates

Compressive Stress:

- Applied forces compress the body (push together)
- Body shortens

Longitudinal Strain:

```
Longitudinal strain (\epsilon) = Change in length (\DeltaL) / Original length (L) \epsilon = \DeltaL/L
```

2. Shearing Stress and Strain

Shearing Stress:

- Forces applied parallel to cross-sectional area
- Causes relative displacement between opposite faces
- No change in length, only shape changes

Shearing Strain:

```
Shearing strain = Relative displacement (\Delta x) / Length (L) \gamma = \Delta x/L = \tan \theta \approx \theta \text{ (for small angles)}
```

Where θ = angular displacement from vertical

Practical Example:

- Book pushed horizontally while pressed from top
- One face moves relative to opposite face

3. Hydraulic Stress and Strain

Hydraulic Stress:

- Uniform pressure applied perpendicular to all surfaces
- Body submerged in fluid under high pressure
- Equal to applied hydraulic pressure

Volume Strain:

```
Volume strain = Change in volume (\Delta V) / Original volume (V) = \Delta V/V
```

Key Points:

- No change in shape, only volume changes
- Occurs in solids, liquids, and gases
- Internal restoring forces balance applied pressure

8.3 HOOKE'S LAW

Statement:

For small deformations, stress is directly proportional to strain

Mathematical Expression:

Stress \propto Strain Stress = k \times Strain

Where k = modulus of elasticity (proportionality constant)

Characteristics:

- Empirical Law: Based on experimental observations
- Valid for most materials: Within elastic limit
- **Linear Relationship**: Straight-line relationship between stress and strain
- Some exceptions: Materials like rubber don't follow Hooke's law over entire range

Physical Significance:

- Provides foundation for quantitative analysis of material behavior
- Enables calculation of material properties

• Basis for engineering design calculations

8.4 STRESS-STRAIN CURVE

Experimental Setup:

- Test specimen (wire or cylinder) subjected to gradually increasing force
- Strain (fractional change in length) measured
- Applied force per unit area (stress) calculated
- Graph plotted: Stress vs Strain

Typical Stress-Strain Curve Analysis:

Region OA: Linear Elastic Region

- Straight line relationship: Hooke's law valid
- Elastic behavior: Body returns to original dimensions when load removed
- **Slope**: Gives Young's modulus
- Reversible deformation: No permanent change

Region AB: Non-linear Elastic Region

- Curved relationship: Stress and strain not proportional
- Still elastic: Body returns to original shape when unloaded
- **Point B**: Yield point or elastic limit

Point B: Yield Point (Elastic Limit)

- **Yield Strength (σy)**: Maximum stress for elastic behavior
- Critical point: Beyond this, permanent deformation begins

• Material-specific: Different for each material

Region BC: Plastic Deformation Region

- **Permanent set**: Body doesn't return to original dimensions
- Rapid strain increase: Large deformation with small stress increase
- Irreversible: Permanent structural changes in material

Point D: Ultimate Tensile Strength

- **Ultimate Strength (σu)**: Maximum stress material can withstand
- **Peak stress**: Highest point on stress-strain curve
- **Material limit**: Beyond this, failure begins

Region DE: Failure Region

- **Necking**: Local reduction in cross-sectional area
- Fracture: Material breaks at point E
- Reduced stress: Due to decreasing cross-sectional area

Material Classification:

Brittle Materials:

- Characteristic: Points D and E are close
- **Behavior**: Sudden failure with little plastic deformation
- **Examples**: Glass, cast iron, ceramics
- Failure mode: Sudden fracture

Ductile Materials:

- Characteristic: Points D and E are far apart
- **Behavior**: Significant plastic deformation before fracture
- **Examples**: Mild steel, copper, aluminum
- Failure mode: Gradual necking and failure

Special Materials:

Elastomers:

- **Examples**: Rubber, biological tissues (aorta)
- Large elastic region: Can be stretched to several times original length
- Non-linear: Don't obey Hooke's law over most of range
- No clear plastic region: Gradual transition to failure

8.5 ELASTIC MODULI

General Definition:

Elastic Modulus = Stress / Strain

The proportionality constant in Hooke's law, characteristic of material properties.

8.5.1 Young's Modulus (Y)

Definition:

Ratio of longitudinal stress to longitudinal strain

Young's Modulus (Y) = Tensile or Compressive Stress / Longitudinal Strain $Y = \sigma/\epsilon = (F/A)/(\Delta L/L) = (F \times L)/(A \times \Delta L)$

Units: N/m² or Pa

Dimensions: [ML⁻¹T⁻²]

Physical Significance:

• Stiffness measure: Higher Y means stiffer material

• Resistance to deformation: Large Y requires large force for small deformation

• Material property: Independent of shape and size

Values for Common Materials:

Material	Young's Modulus (10 ¹¹ N/m ²)	Yield Strength (10 ⁶ N/m ²)
Steel	2.0	300
Copper	1.1	200
Aluminum	0.69	95
Glass	0.65	50
Wood	0.13	50
◀	•	>

Engineering Implications:

• **Steel**: Preferred for heavy-duty machines and structures

• **High Y materials**: Require large forces for small deformation

• **Design consideration**: Material selection based on stiffness requirements

8.5.2 Shear Modulus (G)

Definition:

Ratio of shearing stress to shearing strain

$$G = \tau/\gamma = (F/A)/(\Delta x/L) = (F \times L)/(A \times \Delta x)$$

$$G = (F/A)/\theta = F/(A \times \theta)$$

Alternative Names:

- Modulus of rigidity
- Rigidity modulus

Units: N/m² or Pa

Relationship with Young's Modulus:

For most materials: **G** ≈ **Y/3**

Values for Common Materials:

Material	Shear Modulus (10 ⁹ N/m ²)
Steel	84
Tungsten	150
Copper	42
Aluminum	25
Glass	23
▲	>

Applications:

- Torsion analysis: Shafts under twisting loads
- **Shear deformation**: Structures under lateral forces
- **Material selection**: For applications involving shear stress

8.5.3 Bulk Modulus (B)

Definition:

Ratio of hydraulic stress to volume strain

```
Bulk Modulus (B) = -Hydraulic Stress / Volume Strain 
 B = -p/(\Delta V/V)
```

Negative Sign Significance:

- Increase in pressure causes decrease in volume
- Ensures B is always positive for stable systems
- If p > 0, then $\Delta V < 0$

Units: N/m² or Pa

Compressibility (k):

```
Compressibility (k) = 1/B = -(1/\Delta p) \times (\Delta V/V)
```

Physical meaning: Fractional change in volume per unit pressure increase

Values for Different States:

Material	Bulk Modulus (10 ⁹ N/m ²)	
Solids		
Steel	160	
Copper	140	
Glass	37	
Liquids		
Water	2.2	
Mercury	25	
Gases		
Air (STP)	1.0 × 10 ⁻⁴	
◀		•

Key Observations:

• **Solids**: Least compressible (largest B)

• **Liquids**: Moderately compressible

• **Gases**: Most compressible (smallest B)

• Ratio: Gases ~10⁶ times more compressible than solids

Physical Explanation:

• **Solids**: Tight atomic coupling resists volume change

• **Liquids**: Moderate intermolecular forces

• Gases: Weak intermolecular coupling, easily compressed

8.5.4 Poisson's Ratio (ν)

Definition:

Ratio of lateral strain to longitudinal strain

```
Poisson's Ratio (v) = Lateral Strain / Longitudinal Strain 
 v = (\Deltad/d) / (\DeltaL/L) = (\Deltad/\DeltaL) × (L/d)
```

Characteristics:

- **Dimensionless**: Pure number, no units
- Material property: Depends only on material nature
- **Typical values**: 0.28-0.30 for steel, 0.33 for aluminum

Physical Meaning:

- When material is stretched longitudinally, it contracts laterally
- Quantifies the coupling between perpendicular deformations
- Related to atomic structure and bonding

8.5.5 Elastic Potential Energy

Work Done in Stretching:

When wire is stretched, work done against interatomic forces:

```
Force F = YA(I/L)
Work done dW = F \times dI = (YAI/L) \times dI
```

Total Work for elongation from 0 to l:

$$W = \int_0^1 (YAI/L) dI = (YA/L) \times (I^2/2) = (YAI^2)/(2L)$$

Alternative Forms:

$$W = (1/2) \times Y \times strain^2 \times Volume$$

$$W = (1/2) \times stress \times strain \times Volume$$

Elastic Potential Energy per Unit Volume:

$$u = (1/2) \times \sigma \times \varepsilon = (1/2) \times stress \times strain$$

Physical Significance:

- Energy stored in deformed material
- Recoverable when deformation is removed
- Basis for spring energy calculations

8.6 APPLICATIONS OF ELASTIC BEHAVIOR

Structural Engineering Applications:

1. Crane Design

Problem: Design crane rope for 10-tonne capacity

Solution Approach:

- Avoid permanent deformation: stay within elastic limit
- Use yield strength for safety calculation
- Safety factor: ~10 times working load

Calculation:

Area required: A \geq W/ σ y = Mg/ σ y A \geq (10⁴ kg \times 9.8 m/s²)/(300 \times 10⁶ N/m²) A \geq 3.3 \times 10⁻⁴ m² Radius \geq 1 cm (with safety factor: 3 cm)

Practical Design:

- Multiple thin wires braided together
- Flexibility and strength combination
- Manufacturing ease

2. Beam Design

Loading Configuration: Beam supported at ends, loaded at center

Deflection Formula:

$$\delta = WI^3/(4bd^3Y)$$

Where:

- W = load, I = length, b = breadth, d = depth
- Y = Young's modulus

Design Optimization:

- Material selection: Use high Y materials
- **Dimensional optimization**: Depth d more effective than breadth b
- Cross-section shape: I-beam provides optimal strength-to-weight ratio

I-Beam Advantages:

- Large load-bearing surface (flanges)
- Sufficient depth to prevent bending
- Reduced weight without sacrificing strength
- Cost-effective design
- Prevents buckling under lateral loads

3. Column Design

Load Distribution:

- Rounded ends: Less load capacity
- Distributed ends: Better load distribution
- Shape affects load-bearing capacity

Geological Applications:

Mountain Height Limitation

Physical Analysis:

- Material at mountain base under non-uniform compression
- Shearing stress component exists
- Maximum height limited by rock strength

Calculation:

```
Shearing stress \approx hpg

Maximum stress = 30 \times 10^7 N/m<sup>2</sup>

h = (30 \times 10^7)/(3 \times 10^3 \times 10) = 10 km
```

Result: Maximum mountain height ~10 km (consistent with Mt. Everest)

Safety Considerations:

Design Principles:

• **Safety Factor**: 10× working load typical

• Material Properties: Know yield strength, ultimate strength

• **Loading Conditions**: Consider dynamic loads, environmental factors

• Failure Modes: Design against different failure mechanisms

Material Selection Criteria:

• **Strength requirements**: Yield and ultimate strength

• Stiffness requirements: Young's modulus

• **Environmental resistance**: Corrosion, temperature effects

• Cost considerations: Economic feasibility

• Manufacturing requirements: Machinability, weldability

SUMMARY OF KEY FORMULAS

Stress and Strain:

• Stress: $\sigma = F/A$

• Longitudinal Strain: $\epsilon = \Delta L/L$

• Shearing Strain: $\gamma = \Delta x/L = \tan \theta \approx \theta$

• Volume Strain: △V/V

Hooke's Law:

- **General**: Stress = k × Strain
- Linear region: $\sigma \propto \epsilon$

Elastic Moduli:

- Young's Modulus: $Y = \sigma/\epsilon = (F \times L)/(A \times \Delta L)$
- Shear Modulus: $G = \tau/\gamma = (F \times L)/(A \times \Delta x)$
- **Bulk Modulus**: $B = -p/(\Delta V/V)$
- **Poisson's Ratio**: v = (Lateral Strain)/(Longitudinal Strain)

Energy:

- Elastic Potential Energy: $U = (1/2) \times \sigma \times \epsilon \times Volume$
- Energy Density: $u = (1/2) \times \sigma \times \epsilon$

Applications:

- **Beam Deflection**: $\delta = Wl^3/(4bd^3Y)$
- Safety Design: A ≥ W/σy
- Mountain Height: h ≤ σmax/(ρq)

ExamSprint Watermark