Chapter 12: Kinetic Theory

Comprehensive Study Notes

Class 11 Physics - NCERT Based

EXAM SPRINT - Complete Coverage for JEE and NEET Examinations

12.1 INTRODUCTION

Historical Development

Boyle's Discovery (1661): First gas law established **Pioneers**: Boyle, Newton - early atomic particle theories **Modern Development**: Maxwell, Boltzmann (19th century)

Key Principles of Kinetic Theory

- 1. Gases consist of rapidly moving atoms/molecules
- 2. **Inter-atomic forces negligible** (short range forces important only in solids/liquids)
- 3. **Explains macroscopic properties** through molecular motion

Success of Kinetic Theory

- Molecular interpretation of pressure and temperature
- Consistency with gas laws and Avogadro's hypothesis
- Explains specific heat capacities
- Relates measurable properties (viscosity, conduction, diffusion) to molecular parameters
- Provides estimates of molecular sizes and masses

12.2 MOLECULAR NATURE OF MATTER

Feynman's Atomic Hypothesis

Quote: "Matter is made up of atoms" - most significant discovery **Complete Statement**: All things are made of atoms - little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another.

Historical Atomic Concepts

Ancient India (Kanada - 6th century BC)

- Vaiseshika School: Detailed atomic picture
- Paramanu: Sanskrit word for smallest particle
- Four Types: Bhoomi (Earth), Ap (Water), Tejas (Fire), Vayu (Air)
- Size Estimation: Close to modern atomic size (~10⁻¹⁰ m) in Lalitavistara

Ancient Greece (Democritus - 4th century BC)

- **Atom**: Greek word meaning "indivisible"
- Physical Differences: Shape, size determining substance properties
- Water atoms: Smooth and round (flows easily)
- **Earth atoms**: Rough and jagged (hard substances)
- **Fire atoms**: Thorny (causes burns)

Modern Atomic Theory

John Dalton's Contribution: Scientific atomic theory

- Law of Definite Proportions: Fixed mass ratios in compounds
- Law of Multiple Proportions: Small integer ratios for different compounds

• **Atomic Structure**: Identical atoms within elements, different between elements

Molecular Distances and States

State	Interatomic Distance	Key Characteristics
Solids	~2 Å	Tightly packed, rigidly fixed
Liquids	~2-3 Å	Close but mobile, can flow
Gases	~tens of Å	Far apart, freely moving
◀	•	•

Mean Free Path

Definition: Average distance a molecule travels without colliding

• **In gases**: ~thousands of angstroms

• **Significance**: Enables long-distance molecular motion

Intermolecular Forces

• Long-range attraction: Acts at few angstroms

• **Short-range repulsion**: Acts when atoms come very close

• **Gas behavior**: Forces negligible except during collisions

Current Understanding

Beyond Atoms:

- Atoms → Nucleus + Electrons
- Nucleus → Protons + Neutrons
- Protons/Neutrons → Quarks
- Quarks → Possibly strings

12.3 BEHAVIOUR OF GASES

Ideal Gas Properties

Advantages of studying gases:

- 1. Molecules far apart
- 2. Mutual interactions negligible (except during collisions)
- 3. Simple mathematical relationships

Gas Laws - Mathematical Formulation

Basic Gas Equation

PV = KT (for given sample) ...(12.1)

- P: Pressure
- V: Volume
- T: Absolute temperature (Kelvin)
- K: Constant for given sample, proportional to number of molecules

Universal Gas Law Development

K = **Nk**_**B** where:

- N: Number of molecules
- k_B: Boltzmann constant = $1.38 \times 10^{-23} \text{ J K}^{-1}$

Avogadro's Hypothesis: Equal volumes of gases at same T and P contain equal number of molecules

• Avogadro Number: N_A = 6.02 × 10²³ molecules in 22.4 L at STP

Perfect Gas Equation

PV =
$$\mu$$
RT ...(12.3)

- μ: Number of moles
- $R = N_A k_B$: Universal gas constant = 8.314 J mol⁻¹ K⁻¹

Alternative Forms

PV = **k_B NT** (using number of molecules) **PV** = **nk_B T** (using number density n) **P** = (ρ **RT**)/**M**₀ (using mass density ρ)

Individual Gas Laws

1. Boyle's Law (Constant Temperature)

PV = constant

- Pressure inversely proportional to volume
- **Condition**: Fixed temperature and mass

2. Charles' Law (Constant Pressure)

 $V \propto T$

- Volume directly proportional to absolute temperature
- **Condition**: Fixed pressure and mass

3. Dalton's Law of Partial Pressures

$$P_{total} = P_{1} + P_{2} + P_{3} + ...$$

- Total pressure = sum of partial pressures
- Partial Pressure: Pressure gas would exert if alone in container

Real Gas Behavior

- **Deviations**: Occur at high pressure, low temperature
- Ideal Behavior: Approached at low pressure, high temperature
- **Reason**: Molecular interactions become negligible

12.4 KINETIC THEORY OF AN IDEAL GAS

Basic Assumptions

- 1. Large number of molecules ($\sim 10^{23}$)
- 2. Random motion following Newton's first law
- 3. **Negligible interactions** except during collisions
- 4. **Elastic collisions** (kinetic energy conserved)
- 5. **Point masses** (molecular size negligible)

12.4.1 Pressure of Ideal Gas - Derivation

Setup

- Gas in cube of side I
- Molecule with velocity (v_x, v_y, v_z)
- Collision with wall parallel to yz-plane

Collision Analysis

Before collision: velocity (v_x, v_y, v_z) **After collision**: velocity $(-v_x, v_y, v_z)$ **Momentum change**:

 $\Delta p = -2mv_x$ Momentum imparted to wall: $+2mv_x$

Force Calculation

Molecules hitting wall in time Δt : ½nAv_x Δt

- n: number density (molecules per unit volume)
- A: wall area = I^2
- Factor ½: Only half molecules moving toward wall

Total momentum transfer: $Q = (2mv_x)(\frac{1}{2}nAv_x \Delta t) = nmAv_x^2 \Delta t$

Force on wall: $F = Q/\Delta t = nmAv_x^2$

Pressure: $P = F/A = nmv_x^2$

Final Result

For all molecules: $P = nm(v_x^2)$

Using isotropy: $\langle v_x^2 \rangle = \langle v_y^2 \rangle = \langle v_z^2 \rangle = (1/3)\langle v^2 \rangle$

Final pressure equation: $P = (1/3)nm(v^2) ...(12.14)$

12.4.2 Kinetic Interpretation of Temperature

Energy Relations

From pressure: PV = $(2/3)N \times \frac{1}{2}m\langle v^2 \rangle = (2/3)E$

Where E: Total translational kinetic energy = $N \times \frac{1}{2}m(v^2)$

Temperature Connection

Combining with ideal gas law: $PV = Nk_B T$

Result: $E = (3/2)k_B NT$

Average kinetic energy per molecule: $\frac{1}{2}m\langle v^2 \rangle = (3/2)k_B T ...(12.19)$

Key Insights

- 1. **Temperature** is measure of average kinetic energy
- 2. **Independent** of gas type, pressure, or volume
- 3. **Only depends** on absolute temperature
- 4. **Universal relationship** through Boltzmann constant

Root Mean Square Speed

Definition: $v_rms = \sqrt{\langle v^2 \rangle}$

Formula: $v_rms = \sqrt{(3k_B T/m)} = \sqrt{(3RT/M)}$

Example (N₂ at 300 K): $v_rms \approx 516 \text{ m/s}$

Important Relationships

- **Lighter molecules**: Higher rms speed at same temperature
- **Speed order**: Similar to speed of sound in air
- Gas mixtures: Equal average kinetic energies in equilibrium

12.5 LAW OF EQUIPARTITION OF ENERGY

Degrees of Freedom

Definition: Number of independent coordinates needed to specify molecular motion

Types of Motion

- 1. **Translational**: Motion of center of mass
 - 1D: 1 degree of freedom
 - 2D: 2 degrees of freedom

- 3D: 3 degrees of freedom
- 2. Rotational: Motion about center of mass
 - **Monatomic**: 0 degrees (point mass)
 - **Diatomic**: 2 degrees (two rotation axes)
 - **Polyatomic**: 3 degrees
- 3. Vibrational: Oscillatory motion
 - Each mode contributes 2 degrees (kinetic + potential energy)

Maxwell's Equipartition Theorem

Statement: In thermal equilibrium at temperature T, energy is equally distributed among all energy modes, with each mode having average energy ½k_B T.

Energy Contributions

- Each translational degree: ½k_B T
- Each rotational degree: ½k_B T
- Each vibrational mode: $2 \times \frac{1}{2}k_B T = k_B T$

Molecular Energy Analysis

Monatomic Gas (e.g., He, Ar)

- **Degrees of freedom**: 3 translational
- Average energy per molecule: (3/2)k_B T
- Total energy per mole: U = (3/2)RT

Diatomic Gas (e.g., N₂, O₂)

Rigid Rotator Model:

• **Degrees of freedom**: 3 translational + 2 rotational = 5

• Average energy per molecule: (5/2)k_B T

• Total energy per mole: U = (5/2)RT

With Vibration:

• **Additional degrees**: 1 vibrational mode = 2 degrees

• Total degrees: 7

• Total energy per mole: U = (7/2)RT

Polyatomic Gas

• **Translational**: 3 degrees

• **Rotational**: 3 degrees

• Vibrational: f modes (2f degrees)

• Total energy per mole: U = (3 + f)RT

12.6 SPECIFIC HEAT CAPACITY

12.6.1 Monatomic Gases

Derivation

Internal energy: U = (3/2)RT (per mole)

Molar specific heat at constant volume: $C_v = dU/dT = (3/2)R = 12.5 \text{ J mol}^{-1} \text{ K}^{-1}$

For ideal gas: $C_p - C_v = R$

Molar specific heat at constant pressure: $C_p = C_v + R = (5/2)R = 20.8 \text{ J mol}^{-1} \text{ K}^{-1}$

Heat capacity ratio: $y = C_p/C_v = 5/3 = 1.67$

12.6.2 Diatomic Gases

Rigid Diatomic

Internal energy: U = (5/2)RT

Specific heats:

- $C_v = (5/2)R = 20.8 \text{ J mol}^{-1} \text{ K}^{-1}$
- $C_p = (7/2)R = 29.1 \text{ J mol}^{-1} \text{ K}^{-1}$
- $\gamma = 7/5 = 1.40$

Non-rigid Diatomic (with vibration)

Internal energy: U = (7/2)RT

Specific heats:

- $C_v = (7/2)R$
- $C_p = (9/2)R$
- $\gamma = 9/7 \approx 1.29$

12.6.3 Polyatomic Gases

General formulas:

- $C_v = (3 + f)R$
- $C_p = (4 + f)R$
- $\gamma = (4 + f)/(3 + f)$

Where f = number of vibrational modes

Summary Table - Theoretical Predictions

Gas Type	Degrees of Freedom	C_v (J mol ⁻¹ K ⁻¹)	C_p (J mol ⁻¹ K ⁻¹)	γ
Monatomic	3	12.5	20.8	1.67
Diatomic (rigid)	5	20.8	29.1	1.40
Diatomic (vibrating)	7	29.1	37.4	1.29
Triatomic (rigid)	6	24.9	33.2	1.33
4		'	•	<u> </u>

12.6.4 Specific Heat of Solids

Classical Theory

Model: N atoms, each oscillating in 3D **Energy per atom**: $3k_B T$ (3 oscillators $\times k_B T$ each) **Total energy per mole**: U = 3RT

Dulong-Petit Law: $C = 3R \approx 25 \text{ J mol}^{-1} \text{ K}^{-1}$

Agreement: Good for most solids at room temperature **Exceptions**: Light elements (C, Be, B) due to quantum effects

12.7 MEAN FREE PATH

Physical Concept

Observation: Despite high molecular speeds (~500 m/s), gas diffusion is slow **Reason**: Frequent collisions between molecules

Theoretical Derivation

Setup

• Spherical molecules of diameter d

- Focus on one molecule with speed (v)
- Number density n (molecules per unit volume)

Collision Analysis

Volume swept in time Δt : $\pi d^2 \langle v \rangle \Delta t$ Number of collisions in Δt : $n\pi d^2 \langle v \rangle \Delta t$ Time between collisions: $\tau = 1/(n\pi d^2 \langle v \rangle)$

Mean Free Path

Definition: $I = \langle v \rangle \tau$

Simple derivation: $I = 1/(n\pi d^2) ...(12.39)$

More accurate (accounting for relative motion): $I = 1/(\sqrt{2} n\pi d^2)$...(12.40)

Numerical Example

For air at STP:

- ⟨v⟩ ≈ 485 m/s
- $n \approx 2.7 \times 10^{25} \, \text{m}^{-3}$
- $d \approx 2 \times 10^{-10} \text{ m}$

Results:

- $\tau \approx 6.1 \times 10^{-10} \text{ s}$
- $I \approx 2.9 \times 10^{-7} \text{ m} \approx 1500 \text{ d}$

Key Features

- 1. **Inverse dependence** on density and molecular size
- 2. **Much larger** than molecular size (~1500 times)

- 3. **Explains** gaseous behavior and diffusion rates
- 4. **In vacuum**: Can be as large as container dimensions

SUMMARY - KEY EQUATIONS

Gas Laws

1. **Ideal Gas Law**: $PV = \mu RT = Nk_B T$

2. Pressure from Kinetic Theory: $P = (1/3)nm(v^2)$

3. **Temperature-Energy Relation**: $\frac{1}{2}m\langle v^2 \rangle = (3/2)k_B T$

4. **RMS Speed**: $v_rms = \sqrt{(3k_B T/m)}$

Equipartition of Energy

1. Energy per degree of freedom: ½k_B T

2. **Total energy**: $U = (f/2)k_B NT = (f/2)RT$

3. **Specific heats**: $C_v = (f/2)R$, $C_p = (f/2 + 1)R$

Mean Free Path

1. Mean free path: $I = 1/(\sqrt{2} n\pi d^2)$

2. Collision time: $\tau = I/\langle v \rangle$

3. Collision frequency: $v = \langle v \rangle / l$

IMPORTANT CONSTANTS

Constant	Symbol	Value	Units
Universal Gas Constant	R	8.314	J mol ⁻¹ K ⁻¹
Boltzmann Constant	k_B	1.38 × 10 ⁻²³	J K ⁻¹
Avogadro Number	N_A	6.02 × 10 ²³	mol ⁻¹

Constant	Symbol	Value	Units
Atomic Size	-	~10 ⁻¹⁰	m
STP Molar Volume	-	22.4	L
4	•	•	>

JEE/NEET SPECIFIC POINTS

High-Yield Topics

- 1. Kinetic interpretation of temperature
- 2. RMS speed calculations and comparisons
- 3. Degrees of freedom and specific heat predictions
- 4. Mean free path concept and calculations
- 5. Gas law applications and molecular properties

Common Question Types

1. RMS Speed Problems

- Comparing speeds of different gases at same temperature
- Temperature dependence of molecular speeds
- Effusion and diffusion rate calculations

2. Specific Heat Calculations

- Predicting C_v, C_p, and γ for different gas types
- Energy required for temperature changes
- Equipartition theorem applications

3. Mean Free Path

- Calculating collision frequency and time
- Dependence on pressure, temperature, and molecular size
- Applications to gas transport properties

4. Molecular Energy

- Average kinetic energy calculations
- Energy distribution in different modes
- Relationship between macroscopic and microscopic properties

Memory Aids

Gas Law Constants

"Really Big Kids Always Talk More"

- $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$
- $k B = 1.38 \times 10^{-23} \text{ J K}^{-1}$
- $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$

Specific Heat Ratios

- **Monatomic**: y = 5/3 = 1.67
- **Diatomic**: $\gamma = 7/5 = 1.40$
- **Triatomic**: y = 4/3 = 1.33

Degrees of Freedom

"3 Translate, 2 Rotate, 2 Vibrate per mode"

• Translational: Always 3

• Rotational: 0 (mono), 2 (diatomic), 3 (polyatomic)

• Vibrational: 2 per mode

Practice Problems

1. RMS Speed Comparison

Two gases A and B at same temperature have molecular masses in ratio 1:4. Find ratio of their RMS speeds. **Answer**: $v_A : v_B = 2:1$

2. Specific Heat Prediction

Calculate C_v for rigid diatomic gas. **Answer**: $C_v = (5/2)R = 20.8 \text{ J mol}^{-1} \text{ K}^{-1}$

3. Mean Free Path

If pressure doubles at constant temperature, how does mean free path change? **Answer**: Becomes half ($I \propto 1/P$)

Advanced Applications

- 1. Maxwell-Boltzmann distribution
- 2. **Transport phenomena** (viscosity, thermal conduction)
- 3. **Real gas effects** at high density
- 4. **Quantum corrections** at low temperature

EXAM SPRINT - Master kinetic theory through understanding molecular motion, energy equipartition, and transport properties. Focus on quantitative problem-solving and conceptual connections between microscopic and macroscopic properties.