Chapter 5: Work, Energy and Power - Answer Key

NCERT Physics Class 11

BACK EXERCISES - SOLUTIONS

5.1 Sign of Work Analysis

Determine if the following work quantities are positive or negative:

(a) Work done by man lifting bucket out of well

Answer: POSITIVE - Man's force is upward, displacement is upward. Force and displacement in same direction ($\theta = 0^{\circ}$).

(b) Work done by gravitational force in above case

Answer: NEGATIVE - Gravitational force is downward, displacement is upward. Force and displacement in opposite directions ($\theta = 180^{\circ}$).

(c) Work done by friction on body sliding down inclined plane

Answer: NEGATIVE - Friction opposes motion, acts up the plane while displacement is down the plane ($\theta = 180^{\circ}$).

(d) Work done by applied force on body moving with uniform velocity on rough horizontal plane

Answer: POSITIVE - Applied force is in direction of motion to overcome friction and maintain constant velocity.

(e) Work done by resistive force on vibrating pendulum coming to rest

Answer: NEGATIVE - Air resistance always opposes motion, reducing pendulum's energy until it stops.

5.2 Body Motion with Friction

Given: m = 2 kg, Applied force F = 7 N, $\mu = 0.1$, t = 10 s

Solution: First find acceleration:

- Friction force: $f = \mu mg = 0.1 \times 2 \times 10 = 2 \text{ N}$
- Net force: Fnet = 7 2 = 5 N
- Acceleration: $a = Fnet/m = 5/2 = 2.5 \text{ m/s}^2$
- Displacement in 10 s: $s = \frac{1}{2}at^2 = \frac{1}{2} \times 2.5 \times 100 = 125 \text{ m}$
- (a) Work by applied force: WF = F \times s = 7 \times 125 = **875** J (b) Work by friction: Wf = -f \times s = -2 \times 125 = **-250** J
- (c) Work by net force: Wnet = Fnet \times s = 5 \times 125 = 625 J (d) Change in KE: Δ K = $\frac{1}{2}$ mv² = $\frac{1}{2}$ \times 2 \times (25)² = 625 J

Interpretation: Work-energy theorem verified: Wnet = ΔK

5.3 Potential Energy Analysis

For given potential energy graphs, identify forbidden regions and minimum energies:

Analysis method: Particle cannot exist where Total Energy < Potential Energy

(a) **V-shaped potential:** Forbidden regions where E < V(x). Minimum energy at vertex. (b) **Parabolic potential:** No forbidden regions if E > minimum. Minimum at turning points. (c) **Double well potential:** Forbidden region between wells if energy is low. Two stable positions.

5.4 Simple Harmonic Oscillator

Given: $V(x) = kx^2/2$, k = 0.5 N/m, Total energy E = 1 J

Solution: At turning points: E = V(x), so $KE = 0.1 = \frac{1}{2} \times 0.5 \times x^2 x^2 = 4 x = \pm 2 m$

Answer: Particle must turn back at $x = \pm 2$ m because beyond these points, V(x) > E, which is physically impossible.

5.5 Conceptual Questions

- (a) **Rocket casing burning:** Heat energy comes from **rocket's kinetic energy**. Friction converts mechanical energy to thermal energy.
- (b) **Comet orbital work:** Work = 0 over complete orbit because gravitational force is conservative. Work depends only on initial and final positions, which are same for closed orbit.
- (c) **Satellite losing energy:** As satellite loses energy, it moves to lower orbit where gravitational PE decreases. By energy conservation, KE must increase, hence speed increases.

(d) Man carrying vs pulling mass:

- **Carrying:** Work = 0 (force perpendicular to displacement)
- **Pulling:** Work > 0 (force has component along displacement)
- Answer: Work is greater when pulling.

5.6 Choose Correct Alternative

- (a) When conservative force does positive work: potential energy **decreases** (b) Work against friction results in loss of **kinetic** energy
- (c) Rate of change of momentum proportional to **external force** (d) In inelastic collision, **total linear momentum** remains unchanged

5.7 True/False Analysis

- (a) **FALSE** In elastic collision, total momentum and total energy conserved, but individual body values change. (b) **TRUE** Total energy always conserved (including all forms). (c) **FALSE** Only true for conservative forces. Non-conservative forces like friction give non-zero work over closed loops.
- (d) **TRUE** Some kinetic energy converted to other forms in inelastic collision.

5.8 Collision Analysis

(a) **During elastic collision:** KE not conserved instantaneously (bodies deform), but conserved before and after. (b) **Linear momentum:** Always conserved at every instant due to Newton's Third Law. (c) **Inelastic collision:** Same as elastic - momentum always conserved, KE only conserved before and after (not during). (d) **Potential energy collision:** If PE depends only on separation, collision is **elastic**.

5.9 Power and Motion

Body initially at rest, constant acceleration:

 $P = F \cdot v = ma \cdot (at) = ma^2t$

Since a is constant, $P \propto t$

Answer: (ii) t

5.10 Constant Power Motion

 $P = F \cdot v = constant$

For constant power: F = P/v

From F = ma: ma = P/v, so a = P/(mv)

Using v = ds/dt and a = dv/dt:

dv/dt = P/(mv)

Solving: v dv = (P/m) dt

Integration gives: $v^2 \propto t$, so $v \propto t^{(1/2)}$

Since v = ds/dt: $s \propto t^{(3/2)}$

Answer: (iii) t^(3/2)

5.11 Work by Constrained Force

Given: $F\Box = -\hat{i} + 2\hat{j} + 3\hat{k}$ N, displacement = 4 m along z-axis

d□ = 4k̂ m

Solution: W = F $\Box\Box$ d \Box = $(-\hat{i} + 2\hat{j} + 3\hat{k})\Box(4\hat{k}) = 3 \times 4 = 12 J$

5.12 Electron vs Proton Speed

Given: Electron KE = 10 keV, Proton KE = 100 keV

Solution: For electron: $\frac{1}{2}$ mev $e^2 = 10$ keV For proton: $\frac{1}{2}$ mpvp² = 100 keV

Taking ratio: $(ve/vp)^2 = (KEe/KEp) \times (mp/me) = (10/100) \times (1.67 \times 10^{-27})/(9.11 \times 10^{-31}) = 1833$ ve/vp = 42.8

Answer: Electron is faster by factor of **42.8**

5.13 Raindrop Analysis

Given: r = 2 mm, h = 500 m, terminal velocity at h/2, final speed = 10 m/s

Solution: Mass: $m = (4/3)\pi r^3 \rho = (4/3)\pi (2 \times 10^{-3})^3 \times 10^3 = 3.35 \times 10^{-5} \text{ kg}$

(a) Work by gravity:

- First half: Wg1 = mgh/2 = $3.35 \times 10^{-5} \times 10 \times 250 =$ **0.084 J**
- Second half: Wg2 = mgh/2 = **0.084 J**

(b) **Work by air resistance:** Total gravitational work = mgh = 0.168 J Final KE = $\frac{1}{2}$ mv² = $\frac{1}{2}$ × $3.35 \times 10^{-5} \times 100 = 1.68 \times 10^{-3}$ J Work by air resistance = Final KE - Total gravitational work = **-0.166** J

5.14 Molecular Collision

Given: v = 200 m/s, $\theta = 30^{\circ}$ with normal, elastic collision

Analysis:

• Momentum component parallel to wall: unchanged

- Momentum component perpendicular to wall: reversed
- Total momentum of molecule changes
- But momentum of (molecule + wall) system conserved

Answers:

- Momentum conserved for **system**: YES
- Collision is **elastic** (same speed before and after)

5.15 Water Pump Efficiency

Given: Volume = 30 m^3 , time = 15 min, height = 40 m, efficiency = 30%

Solution: Mass of water: $m = 30 \times 10^3 = 30,000$ kg Work done against gravity: $W = mgh = 30,000 \times 10 \times 40 = 1.2 \times 10^7$ J Power output: Pout = $W/t = 1.2 \times 10^7/900 = 13,333$ W Power input: Pin = Pout/efficiency = 13,333/0.3 = 44.4 kW

5.16 Three Ball Collision

Initial: Two balls at rest, one moving with speed V

After elastic collision: Momentum and energy must be conserved

Analysis of options: Only **(a)** satisfies both conservation laws:

- Momentum: MV = M(0) + M(V) + M(0) ✓
- Energy: $\frac{1}{2}MV^2 = 0 + \frac{1}{2}MV^2 + 0$

5.17 Pendulum Collision

Given: Pendulum released from 30°, elastic collision

Solution: Before collision: mgh = $\frac{1}{2}$ mv₁² h = L(1 - cos30°) = L(1 - $\sqrt{3}$ /2) v₁² = 2gL(1 - $\sqrt{3}$ /2)

After elastic collision between equal masses with one at rest:

First ball stops, second ball moves with v₁

Height reached by bob A after collision: **0 m** (it stops)

5.18 Pendulum with Air Resistance

Given: L = 1.5 m, 5% energy loss, released from horizontal

Solution: Initial energy: $E_0 = mgL$ Final energy: $E_0 = 0.95mgL = \frac{1}{2}mv^2$ mgL - $0.05mgL = \frac{1}{2}mv^2$ 0.95mgL = $\frac{1}{2}mv^2$ v² = $1.9gL = 1.9 \times 10 \times 1.5 = 28.5$ v = **5.34 m/s**

5.19 Leaking Sand Trolley

Given: Trolley mass = 300 kg, sand = 25 kg, initial speed = 27 km/h = 7.5 m/sSand leaking rate = 0.05 kg/s

Solution: No external horizontal forces, so horizontal momentum conserved: Initial momentum = Final momentum $(300 + 25) \times 7.5 = 300 \times \text{vf vf} = 325 \times 7.5/300 = 8.125 \text{ m/s}$

5.20 Variable Velocity Work

Given: m = 0.5 kg, $v = ax^{(3/2)}$, $a = 5 \text{ m}^{(-1/2)}s^{(-1)}$, x: 0 to 2 m

Solution: KE at x = 0: $K_0 = 0$ KE at x = 2: $K_2 = \frac{1}{2}mv^2 = \frac{1}{2} \times 0.5 \times (5 \times 2^{(3/2)})^2 = \frac{1}{2} \times 0.5 \times (5 \times 2^{(3/2$

Work done = $\Delta KE = 200 J$

5.21 Windmill Power

Given: Area A = 30 m^2 , v = 36 km/h = 10 m/s, $\rho = 1.2 \text{ kg/m}^3$, efficiency = 25%

Solution: (a) Mass flow rate: $dm/dt = \rho Av = 1.2 \times 30 \times 10 = 360$ kg/s (b) KE of air per second: $P = \frac{1}{2}(dm/dt)v^2 = \frac{1}{2} \times 360 \times 100 = 18,000$ W

(c) **Electrical power:** Pe = $0.25 \times 18,000 = 4.5 \text{ kW}$

5.22 Weight Loss Exercise

Given: m = 10 kg, h = 0.5 m, repetitions = 1000, efficiency = 20%

Solution: (a) Work against gravity: $W = nmgh = 1000 \times 10 \times 10 \times 0.5 =$ 50,000 J (b) Fat consumption:

- Energy from fat needed = W/efficiency = 50,000/0.2 = 250,000 J
- Fat mass = $250,000/(3.8 \times 10^7) = 6.58 \times 10^{-3} \text{ kg} = 6.58 \text{ g}$

5.23 Solar Panel Area

Given: Power needed = 8 kW, solar intensity = 200 W/m², efficiency = 20%

Solution: (a) **Required area:**

- Usable power density = $200 \times 0.2 = 40 \text{ W/m}^2$
- Area = $8000/40 = 200 \text{ m}^2$
- (b) **Comparison:** Typical house roof $\approx 100\text{-}150 \text{ m}^2$, so solar area is **larger than typical roof**.

KEY FORMULAS REFERENCE

Work and Energy

- $W = F \square \cdot d \square = F d \cos \theta$
- $K = \frac{1}{2}mv^2$
- $\Delta K = Wnet (Work-Energy Theorem)$

Potential Energy

• Gravitational: V = mgh

- Elastic: $V = \frac{1}{2}kx^2$
- Conservative force: F = -dV/dx

Power

- Average: P = W/t
- Instantaneous: P = F□·v□

Collisions

- Momentum conservation: $p\square_i = p\square f$
- Elastic collision: KE_i = KEf
- 1D elastic (m_2 at rest): $v_1f = (m_1-m_2)v_{1i}/(m_1+m_2)$

Answer Key Complete - All exercise problems solved with detailed explanations for JEE/NEET preparation.