
NCERT Chapter 10: Thermal Properties of Matter

EXERCISES - DETAILED ANSWER KEY

10.1 The triple points of neon and carbon dioxide are 24.57 K and 216.55 K
respectively. Express these temperatures on the Celsius and Fahrenheit scales.

Solution:

For Neon (24.57 K):

Celsius conversion: T = tc + 273.15
tc = T - 273.15 = 24.57 - 273.15 = -248.58°C

Fahrenheit conversion: tF = (9/5)tc + 32
tF = (9/5)(-248.58) + 32 = -415.44 + 32 = -383.44°F

For Carbon dioxide (216.55 K):

Celsius conversion:
tc = 216.55 - 273.15 = -56.60°C

Fahrenheit conversion:
tF = (9/5)(-56.60) + 32 = -101.88 + 32 = -69.88°F

Answer:

Neon: -248.58°C, -383.44°F

CO₂: -56.60°C, -69.88°F



10.2 Two absolute scales A and B have triple points of water defined to be 200 A
and 350 B. What is the relation between TA and TB?

Solution:

The triple point of water is 273.16 K on the Kelvin scale.

For scale A: 273.16 K corresponds to 200 A
For scale B: 273.16 K corresponds to 350 B

Since both scales are absolute scales, they are proportional to the Kelvin scale:

TA = (200/273.16) × T

TB = (350/273.16) × T

To find relation between TA and TB:
TA/TB = (200/273.16)/(350/273.16) = 200/350 = 4/7

Answer: TA = (4/7)TB or TB = (7/4)TA

10.3 The electrical resistance in ohms of a certain thermometer varies with
temperature according to the approximate law: R = Ro[1 + α(T - To)]. The
resistance is 101.6 Ω at the triple-point of water 273.16 K, and 165.5 Ω at the
normal melting point of lead (600.5 K). What is the temperature when the
resistance is 123.4 Ω?

Solution:

Given:

At T₁ = 273.16 K: R₁ = 101.6 Ω

At T₂ = 600.5 K: R₂ = 165.5 Ω



Find T when R = 123.4 Ω

Step 1: Find Ro and α using given data

At triple point (T₁ = 273.16 K):
101.6 = Ro[1 + α(273.16 - To)]

At melting point of lead (T₂ = 600.5 K):
165.5 = Ro[1 + α(600.5 - To)]

Step 2: Taking ratio to eliminate Ro: 165.5/101.6 = [1 + α(600.5 - To)]/[1 + α(273.16 - To)]

1.629 = [1 + α(600.5 - To)]/[1 + α(273.16 - To)]

Let's assume To = 273.16 K (triple point as reference):
165.5/101.6 = [1 + α(600.5 - 273.16)]/[1 + α(0)]
1.629 = [1 + α(327.34)]/1
1.629 = 1 + 327.34α
α = 0.629/327.34 = 1.92 × 10⁻³ K⁻¹

Step 3: Find Ro: 101.6 = Ro[1 + 0] = Ro Therefore, Ro = 101.6 Ω

Step 4: Find temperature when R = 123.4 Ω: 123.4 = 101.6[1 + 1.92 × 10⁻³(T - 273.16)] 123.4/101.6
= 1 + 1.92 × 10⁻³(T - 273.16) 1.214 = 1 + 1.92 × 10⁻³(T - 273.16) 0.214 = 1.92 × 10⁻³(T - 273.16) T -
273.16 = 0.214/(1.92 × 10⁻³) = 111.5 T = 273.16 + 111.5 = 384.66 K

Answer: T = 384.7 K

10.4 Answer the following:

(a) The triple-point of water is a standard fixed point in modern thermometry. Why? What is
wrong in taking the melting point of ice and the boiling point of water as standard fixed



points (as was originally done in the Celsius scale)?

Solution:

Why triple point is preferred:

1. Unique temperature: Triple point occurs at one specific temperature and pressure

2. Reproducibility: Can be reproduced precisely in any laboratory

3. No pressure dependence: Temperature is uniquely defined

4. Pure substance: No impurities affect the measurement

Problems with melting/boiling points:

1. Pressure dependence: Both melting and boiling points change with atmospheric pressure

2. Impurity effects: Dissolved gases or impurities alter the temperatures

3. Atmospheric variations: Different locations have different atmospheric pressures

4. Less reproducible: Difficult to maintain standard conditions consistently

(b) There were two fixed points in the original Celsius scale as mentioned above which were
assigned the number 0°C and 100°C respectively. On the absolute scale, one of the fixed
points is the triple-point of water, which on the Kelvin absolute scale is assigned the number
273.16 K. What is the other fixed point on this (Kelvin) scale?

Solution:

The Kelvin scale has only one fixed point: the triple point of water at 273.16 K.

The second "fixed point" is actually the absolute zero at 0 K, which is a theoretical point where all
molecular motion ceases. This is not experimentally achievable but is defined as the zero of the
absolute temperature scale.



(c) The absolute temperature (Kelvin scale) T is related to the temperature tc on the Celsius
scale by tc = T - 273.15. Why do we have 273.15 in this relation, and not 273.16?

Solution:

273.16: Exact value assigned to triple point of water by definition

273.15: Approximate value used for conversion between Celsius and Kelvin scales

The difference arises because:

1. Original Celsius scale defined 0°C as ice point, not triple point

2. Ice point (273.15 K) is slightly different from triple point (273.16 K)

3. For practical conversions, 273.15 is used to maintain compatibility with traditional Celsius scale

4. The 0.01 K difference accounts for the difference between ice point and triple point

(d) What is the temperature of the triple-point of water on an absolute scale whose unit
interval size is equal to that of the Fahrenheit scale?

Solution:

The Fahrenheit scale has 180 divisions between ice and steam points.
The Celsius scale has 100 divisions between the same points.
Therefore, 1°F = (100/180)°C = (5/9)°C

Since the absolute scale has Fahrenheit-sized units:
Triple point temperature = 273.16 K × (180/100) = 273.16 × 1.8 = 491.69°R

Answer: 491.7°R (degrees Rankine)



10.5 Two ideal gas thermometers A and B use oxygen and hydrogen respectively.
The following observations are made:

Temperature Pressure thermometer A Pressure thermometer B

Triple-point of water 1.250 × 10⁵ Pa 0.200 × 10⁵ Pa

Normal melting point of sulphur 1.797 × 10⁵ Pa 0.287 × 10⁵ Pa

(a) What is the absolute temperature of normal melting point of sulphur as read by
thermometers A and B?

Solution:

For ideal gas at constant volume: P ∝ T

For thermometer A: P₁/T₁ = P₂/T₂ (1.250 × 10⁵)/273.16 = (1.797 × 10⁵)/T₂ T₂ = (1.797 × 10⁵ ×
273.16)/(1.250 × 10⁵) = 392.69 K

For thermometer B: (0.200 × 10⁵)/273.16 = (0.287 × 10⁵)/T₂ T₂ = (0.287 × 10⁵ × 273.16)/(0.200 ×
10⁵) = 392.39 K

Answer:

Thermometer A: 392.7 K

Thermometer B: 392.4 K

(b) What do you think is the reason behind the slight difference in answers of thermometers
A and B? What further procedure is needed in the experiment to reduce the discrepancy
between the two readings?

Solution:

Reasons for difference:



1. Non-ideal behavior: Real gases deviate from ideal gas law

2. Intermolecular forces: Different gases have different intermolecular interactions

3. Gas density effects: Higher density gases show more deviation

4. Temperature dependence: Deviations increase at higher temperatures

Procedure to reduce discrepancy:

1. Use lower gas pressures: Approach ideal gas behavior

2. Extrapolate to zero pressure: Take measurements at various pressures and extrapolate P → 0

3. Use lighter gases: Hydrogen shows less deviation than oxygen

4. Correct for gas imperfections: Apply virial equation corrections

10.6 A steel tape 1m long is correctly calibrated for a temperature of 27.0°C. The
length of a steel rod measured by this tape is found to be 63.0 cm on a hot day
when the temperature is 45.0°C. What is the actual length of the steel rod on that
day? What is the length of the same steel rod on a day when the temperature is
27.0°C? Coefficient of linear expansion of steel = 1.20 × 10⁻⁵ K⁻¹.

Solution:

Given:

Tape length at 27°C: L₀ = 1m

Temperature of measurement: T₁ = 45°C

Calibration temperature: T₀ = 27°C

Measured length: 63.0 cm

α_steel = 1.20 × 10⁻⁵ K⁻¹



Step 1: Length of tape at 45°C L_tape = L₀[1 + α(T₁ - T₀)] L_tape = 1[1 + 1.20 × 10⁻⁵(45 - 27)] L_tape
= 1[1 + 1.20 × 10⁻⁵ × 18] L_tape = 1[1 + 2.16 × 10⁻⁴] = 1.000216 m

Step 2: Actual length of rod at 45°C Since tape has expanded, 63.0 cm on expanded tape
corresponds to: Actual length = 0.630 × (1.000216/1.000) = 0.630 × 1.000216 = 0.6301 m = 63.01
cm

Step 3: Length of rod at 27°C The rod also contracts when cooled from 45°C to 27°C: L₂₇ = L₄₅[1 -
α(T₁ - T₀)] L₂₇ = 63.01[1 - 1.20 × 10⁻⁵ × 18] L₂₇ = 63.01[1 - 2.16 × 10⁻⁴] L₂₇ = 63.01 × 0.999784 =
62.99 cm

Answer:

Actual length at 45°C: 63.01 cm

Length at 27°C: 62.99 cm

10.7 A large steel wheel is to be fitted on to a shaft of the same material. At 27°C,
the outer diameter of the shaft is 8.70 cm and the diameter of the central hole in
the wheel is 8.69 cm. The shaft is cooled using 'dry ice'. At what temperature of
the shaft does the wheel slip on the shaft? Assume coefficient of linear expansion
of the steel to be constant over the required temperature range: α_steel = 1.20 ×
10⁻⁵ K⁻¹.

Solution:

Given:

Shaft diameter at 27°C: d₁ = 8.70 cm

Hole diameter: d₂ = 8.69 cm

T₁ = 27°C



α = 1.20 × 10⁻⁵ K⁻¹

For wheel to slip on shaft: shaft diameter = hole diameter

Step 1: Set up equation The shaft contracts when cooled: d₁[1 + α(T₂ - T₁)] = d₂

Step 2: Solve for T₂ 8.70[1 + 1.20 × 10⁻⁵(T₂ - 27)] = 8.69 1 + 1.20 × 10⁻⁵(T₂ - 27) = 8.69/8.70 1 + 1.20
× 10⁻⁵(T₂ - 27) = 0.9988 1.20 × 10⁻⁵(T₂ - 27) = -0.0012 T₂ - 27 = -0.0012/(1.20 × 10⁻⁵) = -100 T₂ = 27
- 100 = -73°C

Answer: T = -73°C

10.8 A hole is drilled in a copper sheet. The diameter of the hole is 4.24 cm at
27.0°C. What is the change in the diameter of the hole when the sheet is heated to
227°C? Coefficient of linear expansion of copper = 1.70 × 10⁻⁵ K⁻¹.

Solution:

Given:

Initial diameter: d₀ = 4.24 cm

T₁ = 27°C, T₂ = 227°C

α_copper = 1.70 × 10⁻⁵ K⁻¹

Key concept: A hole in a sheet expands as if it were made of the same material.

Step 1: Apply linear expansion formula d = d₀[1 + α(T₂ - T₁)] d = 4.24[1 + 1.70 × 10⁻⁵(227 - 27)] d =
4.24[1 + 1.70 × 10⁻⁵ × 200] d = 4.24[1 + 3.40 × 10⁻³] d = 4.24 × 1.0034 = 4.254 cm

Step 2: Calculate change Δd = d - d₀ = 4.254 - 4.24 = 0.014 cm = 0.14 mm

Answer: Increase in diameter = 0.014 cm = 0.14 mm



10.9 A brass wire 1.8 m long at 27°C is held taut with little tension between two
rigid supports. If the wire is cooled to a temperature of -39°C, what is the tension
developed in the wire, if its diameter is 2.0 mm? Co-efficient of linear expansion of
brass = 2.0 × 10⁻⁵ K⁻¹; Young's modulus of brass = 0.91 × 10¹¹ Pa.

Solution:

Given:

L₀ = 1.8 m, T₁ = 27°C, T₂ = -39°C

d = 2.0 mm = 2.0 × 10⁻³ m

α = 2.0 × 10⁻⁵ K⁻¹

Y = 0.91 × 10¹¹ Pa

Step 1: Calculate thermal strain When wire cools, it tries to contract but is prevented by rigid
supports. Thermal strain = α(T₁ - T₂) = 2.0 × 10⁻⁵ × [27 - (-39)] Thermal strain = 2.0 × 10⁻⁵ × 66 =
1.32 × 10⁻³

Step 2: Calculate stress using Young's modulus Stress = Y × strain = 0.91 × 10¹¹ × 1.32 × 10⁻³ =
1.20 × 10⁸ Pa

Step 3: Calculate tension Cross-sectional area = π(d/2)² = π(1.0 × 10⁻³)² = π × 10⁻⁶ m² Tension =
Stress × Area = 1.20 × 10⁸ × π × 10⁻⁶ Tension = 377 N

Answer: Tension = 377 N

10.10 A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of
the same length and diameter. What is the change in length of the combined rod
at 250°C, if the original lengths are at 40.0°C? Is there a 'thermal stress' developed



at the junction? The ends of the rod are free to expand. Co-efficient of linear
expansion of brass = 2.0 × 10⁻⁵ K⁻¹, steel = 1.2 × 10⁻⁵ K⁻¹.

Solution:

Given:

L₁ = L₂ = 0.50 m (brass and steel lengths)

T₁ = 40°C, T₂ = 250°C

α_brass = 2.0 × 10⁻⁵ K⁻¹

α_steel = 1.2 × 10⁻⁵ K⁻¹

Step 1: Expansion of brass rod ΔL_brass = L₁ × α_brass × (T₂ - T₁) ΔL_brass = 0.50 × 2.0 × 10⁻⁵ ×
(250 - 40) ΔL_brass = 0.50 × 2.0 × 10⁻⁵ × 210 = 2.1 × 10⁻³ m = 2.1 mm

Step 2: Expansion of steel rod ΔL_steel = L₂ × α_steel × (T₂ - T₁) ΔL_steel = 0.50 × 1.2 × 10⁻⁵ × 210
= 1.26 × 10⁻³ m = 1.26 mm

Step 3: Total expansion Total ΔL = ΔL_brass + ΔL_steel = 2.1 + 1.26 = 3.36 mm

Step 4: Thermal stress analysis Since the ends are free to expand and both rods are joined at the
junction, each rod can expand independently. The junction moves, but there's no constraint
preventing expansion.

No thermal stress is developed because:

1. Ends are free to expand

2. No external constraint prevents natural expansion

3. Junction simply moves to accommodate different expansions

Answer:



Change in length = 3.36 mm

No thermal stress developed

10.11 The coefficient of volume expansion of glycerine is 49 × 10⁻⁵ K⁻¹. What is
the fractional change in its density for a 30°C rise in temperature?

Solution:

Given:

α_V = 49 × 10⁻⁵ K⁻¹

ΔT = 30°C

Step 1: Relationship between density and volume Mass remains constant, so: ρ₁V₁ = ρ₂V₂ Therefore:
ρ₂/ρ₁ = V₁/V₂

Step 2: Volume expansion V₂ = V₁[1 + α_V × ΔT] V₂ = V₁[1 + 49 × 10⁻⁵ × 30] V₂ = V₁[1 + 1.47 ×
10⁻²] = V₁ × 1.0147

Step 3: Density change ρ₂/ρ₁ = V₁/V₂ = 1/1.0147 = 0.9855

Step 4: Fractional change Fractional change = (ρ₂ - ρ₁)/ρ₁ = ρ₂/ρ₁ - 1 = 0.9855 - 1 = -0.0145

Answer: Fractional decrease in density = 0.0145 or 1.45%

10.12 A 10 kW drilling machine is used to drill a bore in a small aluminium block
of mass 8.0 kg. How much is the rise in temperature of the block in 2.5 minutes,
assuming 50% of power is used up in heating the machine itself or lost to the
surroundings. Specific heat of aluminium = 0.91 J g⁻¹ K⁻¹.

Solution:



Given:

Power = 10 kW = 10,000 W

Time = 2.5 min = 150 s

Mass = 8.0 kg = 8000 g

Efficiency = 50% (for heating the block)

s_Al = 0.91 J g⁻¹ K⁻¹

Step 1: Energy supplied to the block Total energy = Power × Time = 10,000 × 150 = 1.5 × 10⁶ J
Energy used for heating block = 50% × 1.5 × 10⁶ = 7.5 × 10⁵ J

Step 2: Temperature rise Q = msΔT 7.5 × 10⁵ = 8000 × 0.91 × ΔT ΔT = (7.5 × 10⁵)/(8000 × 0.91) =
103°C

Answer: Temperature rise = 103°C

10.13 A copper block of mass 2.5 kg is heated in a furnace to a temperature of
500°C and then placed on a large ice block. What is the maximum amount of ice
that can melt? (Specific heat of copper = 0.39 J g⁻¹ K⁻¹; heat of fusion of water =
335 J g⁻¹).

Solution:

Given:

Mass of copper = 2.5 kg = 2500 g

Initial temperature of copper = 500°C

Final temperature = 0°C (thermal equilibrium with ice)

s_Cu = 0.39 J g⁻¹ K⁻¹



L_f = 335 J g⁻¹

Step 1: Heat lost by copper Q = m × s × ΔT Q = 2500 × 0.39 × (500 - 0) Q = 2500 × 0.39 × 500 =
487,500 J

Step 2: Mass of ice melted Heat gained by ice = Heat lost by copper m_ice × L_f = 487,500 m_ice ×
335 = 487,500 m_ice = 487,500/335 = 1455 g = 1.46 kg

Answer: Maximum ice that can melt = 1.46 kg

10.14 In an experiment on the specific heat of a metal, a 0.20 kg block of the
metal at 150°C is dropped in a copper calorimeter (of water equivalent 0.025 kg)
containing 150 cm³ of water at 27°C. The final temperature is 40°C. Compute the
specific heat of the metal. If heat losses to the surroundings are not negligible, is
your answer greater or smaller than the actual value for specific heat of the metal?

Solution:

Given:

Mass of metal = 0.20 kg

Initial temperature of metal = 150°C

Water equivalent of calorimeter = 0.025 kg

Volume of water = 150 cm³ = 0.15 kg

Initial temperature of water = 27°C

Final temperature = 40°C

s_water = 4186 J kg⁻¹ K⁻¹

Step 1: Heat lost by metal Q_lost = m_metal × s_metal × (150 - 40) = 0.20 × s_metal × 110



Step 2: Heat gained by water and calorimeter Q_gained = (m_water + water equivalent) × s_water
× (40 - 27) Q_gained = (0.15 + 0.025) × 4186 × 13 Q_gained = 0.175 × 4186 × 13 = 9517 J

Step 3: Apply principle of calorimetry Heat lost = Heat gained 0.20 × s_metal × 110 = 9517 s_metal
= 9517/(0.20 × 110) = 432.6 J kg⁻¹ K⁻¹

Effect of heat losses: If heat is lost to surroundings, the calculated specific heat will be smaller
than the actual value because:

Less heat is gained by water and calorimeter

We assume all heat lost by metal goes to water/calorimeter

In reality, some heat escapes to surroundings

Answer:

Specific heat = 433 J kg⁻¹ K⁻¹

Calculated value is smaller than actual

10.15 Given below are observations on molar specific heats at room temperature
of some common gases.

Gas Molar specific heat (Cv) cal mol⁻¹ K⁻¹

Hydrogen 4.87

Nitrogen 4.97

Oxygen 5.02

Nitric oxide 4.99

Carbon monoxide 5.01

Chlorine 6.17



The measured molar specific heats of these gases are markedly different from those for monatomic
gases. Typically, molar specific heat of a monatomic gas is 2.92 cal/mol K. Explain this difference.
What can you infer from the somewhat larger (than the rest) value for chlorine?

Solution:

Explanation of differences:

Monatomic gases (Cv = 2.92 cal/mol K):

Only translational kinetic energy (3 degrees of freedom)

Cv = (3/2)R = 1.5 × 1.987 = 2.98 cal/mol K ≈ 2.92 cal/mol K

Diatomic gases (Cv ≈ 4.97 cal/mol K):

Translational kinetic energy (3 degrees of freedom)

Rotational kinetic energy (2 degrees of freedom)

Total: 5 degrees of freedom

Cv = (5/2)R = 2.5 × 1.987 = 4.97 cal/mol K

Analysis of given data:

1. H₂, N₂, O₂, NO, CO: All show Cv ≈ 5.0 cal/mol K
Consistent with diatomic molecules

5 degrees of freedom (3 translational + 2 rotational)

Vibrational modes not excited at room temperature

2. Chlorine (Cl₂): Cv = 6.17 cal/mol K
Higher than other diatomic gases

Indicates partial excitation of vibrational modes

Heavier molecule → lower vibrational frequencies



Some vibrational energy storage at room temperature

What can be inferred about chlorine:

Being heavier, Cl₂ has lower vibrational frequencies

Some vibrational modes begin to be excited at room temperature

Contribution from vibrational energy storage increases Cv

Trend: heavier diatomic molecules have higher Cv at room temperature

Answer: The difference arises from the number of degrees of freedom. Diatomic gases have 5
degrees of freedom (3 translational + 2 rotational) compared to 3 for monatomic gases. Chlorine's
higher value indicates partial vibrational excitation due to its heavier mass and lower vibrational
frequencies.

10.16 A child running a temperature of 101°F is given an antipyrin (i.e. a medicine
that lowers fever) which causes an increase in the rate of evaporation of sweat
from his body. If the fever is brought down to 98°F in 20 minutes, what is the
average rate of extra evaporation caused by the drug. Assume the evaporation
mechanism to be the only way by which heat is lost. The mass of the child is 30 kg.
The specific heat of human body is approximately the same as that of water, and
latent heat of evaporation of water at that temperature is about 580 cal g⁻¹.

Solution:

Given:

Initial temperature: T₁ = 101°F

Final temperature: T₂ = 98°F

Time: t = 20 min = 1200 s



Mass of child: m = 30 kg = 30,000 g

Specific heat ≈ s_water = 1 cal g⁻¹ °F⁻¹

Latent heat of evaporation: L = 580 cal g⁻¹

Step 1: Heat to be removed from body Q = msΔT = 30,000 × 1 × (101 - 98) = 90,000 cal

Step 2: Mass of water evaporated Heat removed by evaporation = m_evap × L 90,000 = m_evap ×
580 m_evap = 90,000/580 = 155.2 g

Step 3: Rate of evaporation Rate = m_evap/time = 155.2 g / 20 min = 7.76 g/min

Answer: Average rate of extra evaporation = 7.76 g/min

10.17 A 'thermacole' icebox is a cheap and efficient method for storing small
quantities of cooked food in summer in particular. A cubical icebox of side 30 cm
has a thickness of 5.0 cm. If 4.0 kg of ice is put in the box, estimate the amount of
ice remaining after 6 h. The outside temperature is 45°C, and co-efficient of
thermal conductivity of thermacole is 0.01 J s⁻¹ m⁻¹ K⁻¹. [Heat of fusion of water =
335 × 10³ J kg⁻¹]

Solution:

Given:

Cubical box side: a = 30 cm = 0.30 m

Wall thickness: d = 5.0 cm = 0.05 m

Initial ice mass: m₀ = 4.0 kg

Time: t = 6 h = 21,600 s

Outside temperature: T₁ = 45°C



Inside temperature: T₂ = 0°C (ice melting)

Thermal conductivity: K = 0.01 J s⁻¹ m⁻¹ K⁻¹

Latent heat of fusion: Lf = 335 × 10³ J kg⁻¹

Step 1: Calculate surface area for heat transfer For a cube, total surface area = 6a² A = 6 × (0.30)² =
6 × 0.09 = 0.54 m²

Step 2: Calculate rate of heat transfer Using Fourier's law: H = KA(T₁ - T₂)/d H = 0.01 × 0.54 × (45 -
0)/0.05 H = 0.01 × 0.54 × 45/0.05 = 4.86 W

Step 3: Total heat transferred in 6 hours Q = H × t = 4.86 × 21,600 = 104,976 J

Step 4: Mass of ice melted Heat required to melt ice: Q = m × Lf 104,976 = m × 335 × 10³ m =
104,976/(335 × 10³) = 0.313 kg

Step 5: Remaining ice Remaining ice = 4.0 - 0.313 = 3.69 kg

Answer: Ice remaining after 6 hours = 3.69 kg

10.18 A brass boiler has a base area of 0.15 m² and thickness 1.0 cm. It boils water
at the rate of 6.0 kg/min when placed on a gas stove. Estimate the temperature of
the part of the flame in contact with the boiler. Thermal conductivity of brass =
109 J s⁻¹ m⁻¹ K⁻¹; Heat of vaporisation of water = 2256 × 10³ J kg⁻¹.

Solution:

Given:

Base area: A = 0.15 m²

Thickness: d = 1.0 cm = 0.01 m

Rate of boiling: 6.0 kg/min = 0.1 kg/s



K_brass = 109 J s⁻¹ m⁻¹ K⁻¹

Lv = 2256 × 10³ J kg⁻¹

Water temperature: T₂ = 100°C

Step 1: Rate of heat transfer needed for boiling H = mass rate × latent heat H = 0.1 × 2256 × 10³ =
225,600 W

Step 2: Apply Fourier's law for conduction H = KA(T₁ - T₂)/d 225,600 = 109 × 0.15 × (T₁ - 100)/0.01
225,600 = 109 × 15 × (T₁ - 100) 225,600 = 1635 × (T₁ - 100) T₁ - 100 = 225,600/1635 = 138°C T₁ =
100 + 138 = 238°C

Answer: Temperature of flame = 238°C

10.19 Explain why:

(a) A body with large reflectivity is a poor emitter

Solution: According to Kirchhoff's law, good absorbers are good emitters and vice versa.

Reflectivity + Absorptivity = 1 (for opaque bodies)

High reflectivity → Low absorptivity → Poor absorption

Poor absorbers are poor emitters by Kirchhoff's law

This maintains thermal equilibrium - if a body reflected most radiation but emitted well, it
would heat up indefinitely

(b) A brass tumbler feels much colder than a wooden tray on a chilly day

Solution: The sensation depends on the rate of heat conduction from your hand.

Thermal conductivity of brass >> thermal conductivity of wood

Brass conducts heat away from your hand much faster



Faster heat loss creates sensation of "coldness"

Both objects are at same temperature, but brass feels colder due to higher heat transfer rate

Your hand temperature drops faster when touching brass

(c) An optical pyrometer (for measuring high temperatures) calibrated for an ideal black
body radiation gives too low a value for the temperature of a red hot iron piece in the open,
but gives a correct value for the temperature when the same piece is in the furnace

Solution: In open air:

Iron piece has emissivity e < 1 (not a perfect black body)

Emitted radiation intensity = e × (black body intensity)

Pyrometer calibrated for black body radiation interprets lower intensity as lower temperature

Reading is too low by factor related to emissivity

In furnace:

Furnace cavity acts like a black body

Multiple reflections ensure complete absorption

Iron piece reaches thermal equilibrium with furnace walls

Radiation received matches black body radiation at that temperature

Pyrometer gives correct reading

(d) The earth without its atmosphere would be inhospitably cold

Solution: Greenhouse effect of atmosphere:

Atmosphere is transparent to visible light from sun

Earth's surface absorbs solar radiation and heats up

Earth emits infrared radiation (longer wavelength)



Atmospheric gases (CO₂, H₂O vapor) absorb IR radiation

Re-radiated energy partially returns to Earth's surface

This traps heat and raises Earth's temperature

Without atmosphere:

No greenhouse effect

All IR radiation from Earth escapes directly to space

Average temperature would be about -18°C instead of +15°C

No thermal insulation from atmospheric blanket

(e) Heating systems based on circulation of steam are more efficient in warming a building
than those based on circulation of hot water

Solution: Steam heating advantages:

Steam at 100°C condenses to water at 100°C

Releases latent heat of vaporization (2256 kJ/kg)

Much larger heat transfer per unit mass

Water cooling from 100°C to 80°C releases only: 1 × 4.18 × 20 = 83.6 kJ/kg

Comparison:

Steam condensation: 2256 kJ/kg

Hot water cooling (20°C drop): 83.6 kJ/kg

Steam provides ~27 times more heat per kg

More efficient heat transfer and distribution

Smaller mass flow rates required



10.20 A body cools from 80°C to 50°C in 5 minutes. Calculate the time it takes to
cool from 60°C to 30°C. The temperature of the surroundings is 20°C.

Solution:

Given:

Initial cooling: 80°C to 50°C in 5 minutes

Find: Time to cool from 60°C to 30°C

Surrounding temperature: T₁ = 20°C

Using Newton's Law of Cooling: For small temperature differences: Rate ∝ Temperature difference

Method 1 - Average Temperature Approach:

First case:

Average temperature = (80 + 50)/2 = 65°C

Temperature difference from surroundings = 65 - 20 = 45°C

Temperature drop = 80 - 50 = 30°C

Rate = 30°C/5 min = 6°C/min at 45°C difference

Second case:

Average temperature = (60 + 30)/2 = 45°C

Temperature difference = 45 - 20 = 25°C

Temperature drop = 60 - 30 = 30°C

Using rate proportionality: Rate₁/Rate₂ = (Temp difference₁)/(Temp difference₂) 6/Rate₂ = 45/25
Rate₂ = 6 × 25/45 = 3.33°C/min

Time = Temperature drop/Rate = 30/3.33 = 9 minutes



Method 2 - Exponential Law Approach:

From Newton's law: T = T₁ + (T₀ - T₁)e^(-kt)

First case (80°C to 50°C): 50 = 20 + (80 - 20)e^(-5k) 30 = 60e^(-5k) e^(-5k) = 0.5 -5k = ln(0.5) =
-0.693 k = 0.1386 min⁻¹

Second case (60°C to 30°C): 30 = 20 + (60 - 20)e^(-kt) 10 = 40e^(-kt) e^(-kt) = 0.25 -kt = ln(0.25)
= -1.386 t = 1.386/0.1386 = 10 minutes

Answer: Time = 10 minutes (using exact exponential method)


