Chapter 2: Motion in a Straight Line - Answer Key

NCERT Physics Class 11

BACK EXERCISES - SOLUTIONS

2.1 Point Object Consideration

In which of the following examples of motion, can the body be considered approximately a point object:

- **(a) Railway carriage moving without jerks between two stations Answer: YES** The size of carriage is much smaller than the distance between stations.
- **(b) Monkey sitting on top of a man cycling smoothly on a circular track Answer: YES** Both monkey and man can be treated as point objects compared to track dimensions.
- (c) Spinning cricket ball that turns sharply on hitting the ground Answer: NO The spinning motion and sharp turn depend on the ball's size and shape, so it cannot be treated as a point object.
- **(d) Tumbling beaker that has slipped off the edge of a table Answer: NO** The tumbling motion involves rotation which depends on the beaker's dimensions and shape.

2.2 Position-Time Graph Analysis

Choose the correct entries in the brackets:

(a) (A/B) lives closer to the school than (B/A) Answer: A - From graph, A's home (point P) is closer to school O than B's home (point Q).

- (b) (A/B) starts from the school earlier than (B/A) Answer: A A starts at t = 0, while B starts later.
- (c) (A/B) walks faster than (B/A) Answer: B B has steeper slope, indicating higher speed.
- **(d) A and B reach home at the (same/different) time Answer: same** Both reach their respective homes at the same time.
- **(e) (A/B) overtakes (B/A) on the road (once/twice) Answer: A overtakes B once** The lines intersect once during the journey.

2.3 Position-Time Graph for Woman's Journey

Given:

- Home to office: 2.5 km at 5 km/h (30 minutes)
- Stay at office: 9:30 AM to 5:00 PM (7.5 hours)
- Return home: 2.5 km at 25 km/h (6 minutes)

Solution:

Phase 1 (9:00-9:30 AM): Linear increase from 0 to 2.5 km

Phase 2 (9:30 AM-5:00 PM): Constant at 2.5 km

Phase 3 (5:00-5:06 PM): Linear decrease from 2.5 km to 0 $\,$

2.4 Drunkard's Motion

Pattern: 5 steps forward, 3 steps backward, repeat Each step: 1 m, 1 s

Solution:

• Net progress per cycle = 5 - 3 = 2 m in 8 s

• After 6 complete cycles: 12 m in 48 s

• 7th cycle: 5 more steps forward in 5 s

• Total time to reach 13 m away pit = 48 + 1 = 49 s

Graph: Sawtooth pattern with net positive slope of 0.25 m/s.

2.5 Car Retardation Problem

Given: $v_0 = 126 \text{ km/h} = 35 \text{ m/s}, v = 0, s = 200 \text{ m}$

Solution: Using $v^2 = v_0^2 + 2as$:

$$0 = (35)^2 + 2a(200)$$
$$a = -1225/400 = -3.06 \text{ m/s}^2$$

Retardation = 3.06 m/s^2

Time taken using $v = v_0 + at$:

$$0 = 35 + (-3.06)t$$

 $t = 35/3.06 = 11.4 s$

2.6 Ball Thrown Upward

Given: $v_0 = 29.4 \text{ m/s}, g = 9.8 \text{ m/s}^2$

(a) Direction of acceleration during upward motion: Answer: Downward (opposite to velocity direction)

- **(b) Velocity and acceleration at highest point: Velocity:** 0 m/s **Acceleration:** -9.8 m/s² (still downward)
- (c) With given coordinate system (x = 0 at highest point, downward positive):
- **Upward motion:** position (-), velocity (-), acceleration (+)
- **Downward motion:** position (+), velocity (+), acceleration (+)
- (d) Maximum height and time calculations:

Maximum height: $h = v_0^2/(2g) = (29.4)^2/(2 \times 9.8) = 44.1$ m Time to reach max height: $t = v_0/g = 29.4/9.8 = 3.0$ s Total time of flight: 2t = 6.0 s

2.7 True/False Analysis

- (a) Particle with zero speed at an instant may have non-zero acceleration Answer: TRUE **Example:** Ball at highest point of vertical throw has v = 0 but $a = -g \neq 0$
- **(b) Particle with zero speed may have non-zero velocity Answer: FALSE Reason:** Speed is magnitude of velocity. If speed = 0, then |v| = 0, so v = 0
- (c) Particle with constant speed must have zero acceleration Answer: TRUE for onedimensional motion Reason: In 1D, constant speed means constant velocity, hence a = 0
- (d) Particle with positive acceleration must be speeding up Answer: FALSE Reason: Depends on direction of velocity. If v < 0 and a > 0, particle is slowing down

2.8 Ball Drop with Energy Loss

Given: $h_0 = 90$ m, loses 1/10 speed each collision

Solution:

```
Time for first fall: t_1 = \sqrt{(2h_0/g)} = \sqrt{(180/9.8)} = 4.29 \text{ s}
Speed before first collision: v_1 = gt_1 = 42.1 \text{ m/s}
Speed after first collision: 0.9 \times 42.1 = 37.9 \text{ m/s}
```

Heights after successive collisions:

$$h_1 = v_1^2/(2g) = (37.9)^2/(19.6) = 73.2 \text{ m}$$

$$h_2 = 0.81 \times 73.2 = 59.3 \text{ m}$$

$$h_3 = 0.81 \times 59.3 = 48.0 \text{ m}$$

Graph: Decreasing amplitude sawtooth with reducing time intervals.

2.9 Displacement vs Path Length

- (a) Magnitude of displacement vs total path length: Displacement: Straight line distance between initial and final positions Path length: Actual distance traveled along the path Relationship: |displacement| ≤ path length Equality when: Motion is along straight line in one direction
- (b) Magnitude of average velocity vs average speed: Average velocity magnitude: |total displacement|/time Average speed: total path length/time Relationship: |average velocity| ≤ average speed Equality when: Motion is along straight line in one direction

2.10 Market Trip Analysis

Given: Home to market: 2.5 km at 5 km/h, Market to home: 2.5 km at 7.5 km/h

Time calculations:

- To market: $t_1 = 2.5/5 = 0.5 h = 30 min$
- From market: $t_2 = 2.5/7.5 = 1/3 h = 20 min$
- (a) Magnitude of average velocity: (i) 0 to 30 min: |2.5 km|/0.5 h = 5 km/h (ii) 0 to 50 min: |0.5 km|/50 min = 0 km/h (iii) 0 to 40 min: |1.25 km|/40 min = 1.875 km/h
- **(b) Average speed: (i) 0 to 30 min:** 2.5 km/0.5 h = 5 km/h **(ii) 0 to 50 min:** 5 km/50 min = 6 km/h **(iii) 0 to 40 min:** 3.75 km/40 min = 5.625 km/h

2.11 Instantaneous Speed vs Velocity Magnitude

Answer: At any instant, both speed and velocity refer to the same instant of time. Since speed is defined as the magnitude of instantaneous velocity, they are always equal: **Instantaneous speed = [instantaneous velocity]**

This differs from average quantities where the path and displacement can be different over a time interval.

2.12 Impossible Position-Time Graphs

- (a) Possible Single-valued function (b) Impossible Multiple positions at same time (vertical line)
- (c) Possible Valid parabolic motion (d) Impossible Multiple positions at same time

Reason: Position-time graphs must be single-valued functions since an object cannot be at multiple positions simultaneously.

2.13 Motion Path Interpretation

Answer: NO, this interpretation is incorrect.

Correct interpretation: The graph shows one-dimensional motion along a straight line throughout. The change from linear to parabolic represents changing from constant velocity (t < 0) to constant acceleration motion (t > 0).

Physical context: A car moving at constant speed that starts accelerating at t = 0.

2.14 Bullet Speed Relative to Thief's Car

Given:

• Police van speed: 30 km/h = 8.33 m/s

• Thief's car speed: 192 km/h = 53.33 m/s

• Bullet muzzle speed: 150 m/s

Solution:

Bullet speed relative to ground = 150 + 8.33 = 158.33 m/s

Thief's car speed relative to ground = 53.33 m/s

Bullet speed relative to thief's car = 158.33 - 53.33 = 105 m/s

Answer: 105 m/s (This is the relevant speed for damage assessment)

2.15 Graph Physical Situations

(a) Position-time: Object moving away from origin, then returning Example: Ball thrown upward

from ground level

- **(b) Velocity-time:** Object accelerating in positive direction, then decelerating **Example:** Car speeding up then braking
- **(c) Acceleration-time:** Constant positive acceleration, then constant negative **Example:** Rocket with thruster on, then off with air resistance

2.16 Simple Harmonic Motion Signs

At t = 0.3 s:

- Position: Positive (above x = 0)
- Velocity: Negative (moving toward equilibrium)
- Acceleration: Negative (toward equilibrium)

At t = 1.2 s:

- Position: Negative (below x = 0)
- Velocity: Negative (moving away from equilibrium)
- Acceleration: Positive (toward equilibrium)

At t = -1.2 s:

- Position: Negative (below x = 0)
- Velocity: Positive (moving toward equilibrium)
- Acceleration: Positive (toward equilibrium)

2.17 Average Speed Comparison

Analysis of three equal intervals:

- **Interval 1:** Steepest slope (highest average speed)
- Interval 2: Medium slope (medium average speed)
- **Interval 3:** Gentlest slope (lowest average speed)

Average velocity signs:

- **Interval 1:** Positive (increasing position)
- **Interval 2:** Positive (increasing position)
- **Interval 3:** Positive (increasing position)

2.18 Speed-Time Graph Analysis

Greatest average acceleration magnitude: Interval 2 (steepest slope) Greatest average speed:

Interval 2 (highest on speed axis)

Signs in three intervals:

- **Interval 1:** v > 0, a > 0 (speeding up in positive direction)
- **Interval 2:** v > 0, a < 0 (slowing down in positive direction)
- **Interval 3:** v > 0, a = 0 (constant speed in positive direction)

Accelerations at specific points:

- **Point A:** Positive (upward slope)
- **Point B:** Zero (horizontal tangent)
- **Point C:** Negative (downward slope)

• **Point D:** Zero (horizontal line)

KEY FORMULAS REFERENCE

Kinematic Equations

```
v = v_0 + at

s = v_0 t + \frac{1}{2}at^2

v^2 = v_0^2 + 2as

s = \frac{1}{2}(v_0 + v)t
```

Graphical Relations

```
x-t graph: slope = velocity
v-t graph: slope = acceleration, area = displacement
a-t graph: area = change in velocity
```

Free Fall (taking downward as positive)

```
v = gt \text{ (from rest)}
h = \frac{1}{2}gt^2
v^2 = 2gh
```

Answer Key Complete - All exercise problems solved with detailed explanations and proper reasoning for JEE/NEET preparation.