Chapter 8: Mechanical Properties of Solids - NCERT Exercise Solutions

Physics Class 11

ExamSprint Watermark

8.1 Young's Modulus Ratio: Steel vs Copper

Given: Steel wire ($L_1 = 4.7 \text{ m}$, $A_1 = 3.0 \times 10^{-5} \text{ m}^2$) and copper wire ($L_2 = 3.5 \text{ m}$, $A_2 = 4.0 \times 10^{-5} \text{ m}^2$) stretch by same amount under same load.

Solution: For same load F and same elongation Δ L:

$$\Delta L = FL_1/(Y_1A_1) = FL_2/(Y_2A_2)$$

$$Y_1/Y_2 = (L_1/A_1)/(L_2/A_2) = (L_1A_2)/(L_2A_1)$$

$$Y_1/Y_2 = (4.7 \times 4.0 \times 10^{-5})/(3.5 \times 3.0 \times 10^{-5}) = 1.79$$

Answer: Y_steel/Y_copper = 1.8

8.2 Material Properties from Graph

From the stress-strain graph:

(a) Young's modulus:

 $Y = \frac{150 \times 10^6 \text{ Pa}}{0.002} = 7.5 \times 10^{10} \text{ Pa}$

(b) Approximate yield strength: Answer: ~300×10⁶ Pa (where linear relationship ends)

8.3 Comparing Materials A and B

From stress-strain graphs:

(a) Greater Young's modulus: Material A has steeper slope in linear region (b) Stronger material: Material B has higher ultimate strength (can withstand more stress before breaking)

8.4 True/False Statements

- (a) Young's modulus of rubber > steel: FALSE Steel has much higher Young's modulus (~200 GPa vs ~0.01 GPa for rubber)
- **(b) Coil stretching determined by shear modulus: TRUE** Coil springs undergo torsional deformation, which depends on shear modulus

8.5 Wire Elongations Under Load

Given: Steel wire (d = 0.25 cm, L = 1.5 m) and brass wire (L = 1.0 m) with 4.0 kg load

Solution:

Area A =
$$\pi (0.125 \times 10^{-2})^2 = 4.91 \times 10^{-6} \text{ m}^2$$

Stress = F/A = $(4.0 \times 9.8)/4.91 \times 10^{-6} = 8.0 \times 10^6 \text{ Pa}$

Steel elongation: $\Delta L_1 = (stress \times L)/Y = (8.0 \times 10^6 \times 1.5)/(2.0 \times 10^{11}) = 6 \times 10^{-5} \text{ m}$

Brass elongation: $\Delta L_2 = (8.0 \times 10^6 \times 1.0)/(0.91 \times 10^{11}) = 8.8 \times 10^{-5} \text{ m}$

Answer: Steel = 0.06 mm, Brass = 0.088 mm

8.6 Aluminum Cube Shear Deflection

Given: Cube edge = 10 cm, mass = 100 kg attached to opposite face, G = 25 GPa

Solution:

```
Shear stress = F/A = (100 \times 9.8)/(0.1)^2 = 9,800 Pa
Shear strain = stress/G = 9,800/(25×10<sup>9</sup>) = 3.92×10<sup>-7</sup>
Deflection = strain × height = 3.92×10<sup>-7</sup> × 0.1 = 3.92×10<sup>-8</sup> m
```

Answer: Vertical deflection = 39.2 nm

8.7 Steel Column Compression

Given: Four columns support 50,000 kg, inner radius = 30 cm, outer radius = 60 cm

Solution:

```
Load per column = 50,000/4 = 12,500 \text{ kg}

Area per column = \pi(0.6^2 - 0.3^2) = \pi(0.27) = 0.848 \text{ m}^2

Stress = (12,500 \times 9.8)/0.848 = 1.44 \times 10^5 \text{ Pa}

Strain = stress/Y = 1.44 \times 10^5/(2.0 \times 10^{11}) = 7.2 \times 10^{-7}
```

Answer: Compressional strain = 7.2×10^{-7}

8.8 Copper Tensile Strain

Given: Cross-section 15.2×19.1 mm², force = 44,500 N, elastic deformation only

Solution:

```
Area = 15.2 \times 19.1 \times 10^{-6} = 2.90 \times 10^{-4} \text{ m}^2

Stress = F/A = 44,500/(2.90 \times 10^{-4}) = 1.53 \times 10^8 \text{ Pa}

Strain = stress/Y = 1.53 \times 10^8/(1.1 \times 10^{11}) = 1.39 \times 10^{-3}
```

Answer: Strain = 1.4×10^{-3} or 0.14%

8.9 Steel Cable Maximum Load

Given: Radius = 1.5 cm, maximum stress = 10^8 N/m²

Solution:

```
Area = \pi r^2 = \pi (0.015)^2 = 7.07 \times 10^{-4} \text{ m}^2
Maximum load = stress × area = 10^8 \times 7.07 \times 10^{-4} = 70,700 \text{ N}
```

Answer: Maximum load = 70.7 kN

8.10 Three-Wire Support System

Given: Steel bar (15 kg) supported by 3 wires (2 copper, 1 iron), each 2.0 m long, same tension

Solution: For same tension and same elongation:

```
\Delta L = FL/(YA) = constant
Therefore: A \propto 1/Y
A\_copper/A\_iron = Y\_iron/Y\_copper = (2.0 \times 10^{11})/(1.1 \times 10^{11}) = 1.82
d\_copper/d\_iron = \sqrt{1.82} = 1.35
```

Answer: Diameter ratio = 1.35:1

8.11 Whirling Mass Wire Extension

Given: m = 14.5 kg, L = 1.0 m, ω = 2 rev/s = 4π rad/s, A = 0.065 cm²

Solution: At bottom of circle, total tension:

$$T = mg + m\omega^{2}L = 14.5 \times 9.8 + 14.5 \times (4\pi)^{2} \times 1.0 = 142 + 2,280 = 2,422 \text{ N}$$
 Stress = T/A = 2,422/(0.065 × 10⁻⁴) = 3.73 × 10⁸ Pa
Extension = (stress × L)/Y = (3.73 × 10⁸ × 1.0)/(2.0 × 10¹¹) = 1.86 × 10⁻³ m

Answer: Extension = 1.86 mm

8.12 Water Bulk Modulus

Given: Initial volume = 100.0 L, pressure increase = 100.0 atm, final volume = 100.5 L

Solution:

```
\Delta V = 100.5 - 100.0 = 0.5 L

Volume strain = \Delta V/V = 0.5/100.0 = 0.005

Pressure = 100 \times 1.013 \times 10^5 = 1.013 \times 10^7 Pa

Bulk modulus B = pressure/volume strain = 1.013 \times 10^7/0.005 = 2.03 \times 10^9 Pa
```

8.13 Water Density at Depth

Given: Pressure = 80.0 atm, surface density = 1.03×10^3 kg/m³

Solution:

```
Pressure = 80 \times 1.013 \times 10^5 = 8.1 \times 10^6 \text{ Pa}

Volume strain = pressure/B = 8.1 \times 10^6/(2.2 \times 10^9) = 3.68 \times 10^{-3}

Density increase = \rho_0 \times \text{volume strain} = 1.03 \times 10^3 \times 3.68 \times 10^{-3} = 3.79 \text{ kg/m}^3

Final density = 1.03 \times 10^3 + 3.79 = 1.034 \times 10^3 \text{ kg/m}^3
```

Answer: Density = 1.034×10^3 kg/m³

8.14 Glass Volume Change

Given: Hydraulic pressure = 10 atm, B_glass = 37×10^9 Pa

Solution:

```
Pressure = 10 \times 1.013 \times 10^5 = 1.013 \times 10^6 \text{ Pa}
Fractional volume change = pressure/B = 1.013 \times 10^6/(37 \times 10^9) = 2.74 \times 10^{-5}
```

Answer: $\Delta V/V = 2.7 \times 10^{-5}$ or 0.003%

8.15 Copper Cube Volume Contraction

Given: Edge = 10 cm, pressure = 7.0×10^6 Pa, B_copper = 140×10^9 Pa

Solution:

Original volume = $(0.1)^3 = 10^{-3} \text{ m}^3$ Volume strain = pressure/B = $7.0 \times 10^6 / (140 \times 10^9) = 5 \times 10^{-5}$

Volume contraction = volume strain × original volume = $5 \times 10^{-5} \times 10^{-3} = 5 \times 10^{-8} \text{ m}^3$

Answer: Volume contraction = 5×10^{-8} m³ = 0.05 cm³

8.16 Water Pressure for 0.10% Compression

Given: Volume reduction = $0.10\% = 10^{-3}$, B_water = 2.2×10^{9} Pa

Solution:

Required pressure = B \times volume strain = $2.2 \times 10^9 \times 10^{-3} = 2.2 \times 10^6$ Pa

Pressure increase = 2.2×10^6 Pa = 21.7 atm

Answer: Pressure increase = 2.2 MPa or 22 atm

Key Formulas Reference

Stress and Strain

• Stress: $\sigma = F/A$

• Longitudinal strain: $\epsilon = \Delta L/L$

- Volume strain: △V/V
- Shear strain: $\gamma = \Delta x/L = \tan \theta$

Elastic Moduli

- Young's modulus: $Y = \sigma/\epsilon = (F/A)/(\Delta L/L)$
- Shear modulus: $G = \tau/\gamma = (F/A)/\theta$
- **Bulk modulus:** $B = -p/(\Delta V/V)$

Key Relationships

- **Hooke's law:** Stress ∝ Strain (within elastic limit)
- **Energy density:** $u = \frac{1}{2}\sigma\epsilon = \frac{1}{2}(stress \times strain)$
- **Poisson's ratio:** v = (lateral strain)/(longitudinal strain)

ExamSprint Watermark