Chapter 9: Mechanical Properties of Fluids - Answer Key

NCERT Physics Class 11

BACK EXERCISES - SOLUTIONS

9.1 Blood Pressure and Atmospheric Pressure

Explain why:

(a) The blood pressure in humans is greater at the feet than at the brain

Answer: Due to gravitational effect on fluid pressure. Using $P = P_0 + \rho gh$:

- Blood is a fluid with density $\rho \approx 1060 \text{ kg/m}^3$
- Height difference h between feet and brain ≈ 1.5-1.8 m
- Pressure difference: $\Delta P = \rho gh = 1060 \times 9.8 \times 1.6 \approx 16,600 Pa \approx 125 mmHg$
- **Result:** Feet experience higher pressure than brain due to hydrostatic pressure

(b) Atmospheric pressure at 6 km height decreases to nearly half, though atmosphere extends > 100 km

Answer: Atmospheric density decreases exponentially with altitude

- Air is compressible (unlike liquids)
- Higher altitude → lower pressure → lower density
- Most atmospheric mass concentrated in lower layers
- At 6 km: pressure ≈ 0.5 atm because ~50% of atmosphere's mass is below this height
- **Key Point:** Pressure depends on weight of air column above, not total atmospheric height

(c) Hydrostatic pressure is scalar even though pressure is force divided by area

Answer: Pressure at a point acts equally in all directions

- Force F in numerator is always normal force component (scalar magnitude)
- Direction is automatically perpendicular to any surface element
- Pascal's law: pressure same in all directions at a point
- **Result:** No preferred direction can be assigned to pressure at a point

9.2 Surface Tension and Contact Angles

Explain why:

(a) Mercury-glass contact angle is obtuse, while water-glass is acute

Answer: Different intermolecular attractions

- Mercury-glass: $S_sl > S_la \rightarrow \cos \theta < 0 \rightarrow \theta > 90^\circ$ (obtuse)
 - Mercury atoms attract each other more strongly than to glass
 - High surface energy at mercury-glass interface
- Water-glass: $S_sI < S_Ia \rightarrow \cos \theta > 0 \rightarrow \theta < 90^\circ$ (acute)
 - Water molecules form hydrogen bonds with glass surface
 - Lower surface energy at water-glass interface

(b) Water spreads on glass while mercury forms drops

Answer: Related to contact angles

- Water on glass: θ < 90° (acute) \rightarrow good wetting \rightarrow spreads out
- **Mercury on glass:** $\theta > 90^{\circ}$ (obtuse) \rightarrow poor wetting \rightarrow forms spherical drops
- **Energy principle:** System minimizes total surface energy

(c) Surface tension is independent of surface area

Answer: Surface tension is an intensive property

- **Definition:** S = Force per unit length = Energy per unit area
- Analogy: Like density being independent of volume
- Physical meaning: Depends only on molecular properties, not system size
- Larger surface → proportionally larger force, but S = F/I remains constant

(d) Water with detergent has small contact angles

Answer: Detergents are surfactants (surface active agents)

- Reduce surface tension of water-air interface
- From contact angle equation: $S_{a} \cos \theta + S_{s} = S_{s}$
- Smaller S_la \rightarrow larger cos $\theta \rightarrow$ smaller θ
- **Result:** Better wetting, easier penetration into fabrics

(e) Liquid drop under no external forces is spherical

Answer: Sphere minimizes surface area for given volume

- Surface energy ∝ surface area
- Minimum energy → minimum surface area
- Mathematical result: sphere has smallest surface area for given volume
- No external forces: Only surface tension determines shape

9.3 Fill in the Blanks

(a) Surface tension generally *decreases* with temperature Reason: Higher temperature \rightarrow more molecular motion \rightarrow weaker intermolecular bonds \rightarrow lower surface energy

- (b) Viscosity of gases *increases* with temperature, viscosity of liquids *decreases* with temperature Reason:
 - **Gases:** Higher T → more molecular collisions → more momentum transfer → higher viscosity
 - **Liquids:** Higher T → more molecular mobility → easier flow → lower viscosity
- (c) For solids: shearing force \propto *shear strain*, for fluids: shearing force \propto *rate of shear strain* Reason:
- **Solids:** Elastic deformation, stress proportional to strain
- **Fluids:** Viscous flow, stress proportional to strain rate (dy/dt)
- (d) Flow speed increase at constriction follows conservation of mass Reason: Continuity equation $A_1v_1 = A_2v_2$ comes from mass conservation
- (e) Wind tunnel model has *greater* speed for turbulence than actual plane Reason: Reynolds number Re = $\rho v L/\eta$ must match; smaller model (L) requires higher v

9.4 Bernoulli's Principle Applications

Explain why:

(a) To keep paper horizontal, blow over it, not under it

Answer: Bernoulli's principle creates pressure difference

- **Blowing over:** High velocity above → low pressure above
- **Static air below:** Zero velocity → atmospheric pressure below
- **Result:** Upward force (P_below P_above) keeps paper horizontal
- **Blowing under:** Would create high pressure below, pushing paper down
- (b) Fast water jets through finger gaps when closing tap

Answer: Continuity equation $A_1v_1 = A_2v_2$

• Large area: Finger gaps create much smaller effective area A₂

• Conservation of mass: Same volume flow rate

• **Result:** Much higher velocity v₂ through small gaps

• Physics: Speed inversely proportional to cross-sectional area

(c) Syringe needle controls flow rate better than thumb pressure

Answer: Flow rate depends on pressure difference and resistance

• **Needle resistance:** Very high due to small diameter ($\propto 1/r^4$)

• Thumb pressure variation: Small effect compared to needle resistance

• **Result:** Needle geometry dominates flow characteristics

• **Control:** Precise flow rate determined by needle diameter, not pressure variations

(d) Fluid outflow creates backward thrust

Answer: Newton's third law (momentum conservation)

• Fluid momentum: Mass × velocity leaving vessel

• Reaction force: Equal and opposite force on vessel

• **Example:** Rocket propulsion, garden hose recoil

• **Physics:** Rate of momentum change = Force

(e) Spinning cricket ball doesn't follow parabolic trajectory

Answer: Magnus effect due to asymmetric airflow

• **No spin:** Symmetric airflow → parabolic path under gravity alone

• With spin: Ball drags air → velocity difference above/below

- Bernoulli effect: Pressure difference creates sideways force
- **Result:** Curved trajectory, not simple parabola

9.5 High Heel Pressure Calculation

Given: Mass = 50 kg, heel diameter = 1.0 cm, single heel contact

Solution:

```
Contact area: A = \pi r^2 = \pi \times (0.5 \times 10^{-2} \text{ m})^2 = \pi \times 2.5 \times 10^{-5} \text{ m}^2
Force: F = mg = 50 \times 9.8 = 490 \text{ N}
Pressure: P = F/A = 490/(\pi \times 2.5 \times 10^{-5}) = 6.24 \times 10^6 \text{ Pa} = 6.24 \text{ MPa}
```

Answer: 6.24×10^6 Pa (about 62 atmospheres!)

9.6 Torricelli's Barometer with Wine

Given: Wine density = 984 kg/m³, atmospheric pressure = 1 atm

Solution: Using $P_a = \rho gh$:

```
Mercury: 1.01 \times 10^5 = 13,600 \times 9.8 \times h_Hg

h_Hg = 0.76 \text{ m} = 76 \text{ cm}

Wine: 1.01 \times 10^5 = 984 \times 9.8 \times h_wine

h_wine = 1.01 \times 10^5/(984 \times 9.8) = 10.5 \text{ m}
```

Answer: Wine column height = 10.5 m

9.7 Off-Shore Structure Safety

Given: Maximum stress = 10⁹ Pa, ocean depth = 3 km

Solution:

Ocean pressure at 3 km depth:

 $P = P_a + \rho gh = 1.01 \times 10^5 + 1030 \times 9.8 \times 3000$

 $P = 1.01 \times 10^5 + 3.03 \times 10^7 = 3.04 \times 10^7 Pa$

Maximum allowable: 10^9 Pa Actual pressure: 3.04×10^7 Pa Safety factor: $10^9/(3.04 \times 10^7) \approx 33$

Answer: YES, structure is suitable (actual pressure << maximum stress)

9.8 Hydraulic Lift Design

Given: Maximum car mass = 3000 kg, load piston area = 425 cm²

Solution:

Maximum load force: $F_2 = mg = 3000 \times 9.8 = 29,400 \text{ N}$

Load piston area: $A_2 = 425 \text{ cm}^2 = 0.0425 \text{ m}^2$

Required pressure: $P = F_2/A_2 = 29,400/0.0425 = 692,000 \text{ Pa} \approx 6.9 \times 10^5 \text{ Pa}$

Answer: Maximum pressure = 6.9×10^5 Pa = 6.9 bar

9.9 U-Tube Manometer Analysis

Given: 10.0 cm water, 12.5 cm spirit, mercury levels equal

Solution: For equal mercury levels, pressures at mercury surface must be equal:

```
P_water + \rho_water × g × h_water = P_spirit + \rho_spirit × g × h_spirit \rho_water × h_water = \rho_spirit × h_spirit (atmospheric pressure cancels) 1000 \times 0.10 = \rho_spirit × 0.125 \rho_spirit = 1000 \times 0.10/0.125 = 800 \text{ kg/m}^3 Specific gravity of spirit = 800/1000 = 0.8
```

Answer: Specific gravity = 0.8

9.10 Mercury Level Difference

Given: Additional 15.0 cm each of water and spirit, mercury specific gravity = 13.6

Solution:

Initial state: Mercury levels equal

After adding liquids:

- Water column: 10.0 + 15.0 = 25.0 cm

- Spirit column: 12.5 + 15.0 = 27.5 cm

Pressure difference at mercury interface:

 $\Delta P = \rho_{\text{water}} \times g \times 0.25 - \rho_{\text{spirit}} \times g \times 0.275$ $\Delta P = g(1000 \times 0.25 - 800 \times 0.275) = g(250 - 220) = 30g Pa$

Mercury level difference:

 $\Delta h = \Delta P/(\rho_H g \times g) = 30g/(13,600 \times g) = 30/13,600 = 0.0022 \text{ m} = 0.22 \text{ cm}$

Answer: Mercury level difference = 0.22 cm (water side higher)

9.11 Bernoulli's Equation in River Rapids

Answer: NO, Bernoulli's equation cannot be used

Reasons:

- 1. **Turbulent flow:** Rapids are inherently turbulent, violating steady flow assumption
- 2. Significant viscosity: Energy loss due to friction and turbulence
- 3. Non-uniform flow: Velocity varies chaotically in space and time
- 4. **Energy dissipation:** Kinetic energy converted to heat and sound

Valid applications: Smooth, laminar flow with negligible viscosity

9.12 Gauge vs Absolute Pressure in Bernoulli's Equation

Answer: NO, it does not matter

Explanation: Bernoulli's equation involves pressure differences:

$$P_1 + \frac{1}{2}\rho v_1^2 + \rho g h_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g h_2$$

 $(P_1 - P_2) = \frac{1}{2}\rho (v_2^2 - v_1^2) + \rho g (h_2 - h_1)$

Whether using absolute or gauge pressures:

- **Absolute:** P_abs = P_gauge + P_a
- **Difference:** $(P_1_abs P_2_abs) = (P_1_gauge + P_a) (P_2_gauge + P_a) = (P_1_gauge P_2_gauge)$
- **Result:** Atmospheric pressure cancels out in differences

9.13 Viscous Flow in Horizontal Tube

Given: L = 1.5 m, r = 1.0 cm, mass flow rate = 4.0×10^{-3} kg/s, ρ _glycerine = 1.3×10^{3} kg/m³, η = 0.83 Pa·s

Solution:

Volume flow rate: Q = mass flow rate/density = $(4.0 \times 10^{-3})/(1.3 \times 10^{3}) = 3.08 \times 10^{-6} \text{ m}^{3}/\text{s}$

For laminar flow in pipe (Poiseuille's equation):

 $Q = \pi r^4 \Delta P / (8 \eta L)$

Solving for pressure difference:

 $\Delta P = 8\eta LQ/(\pi r^4)$

 $\Delta P = 8 \times 0.83 \times 1.5 \times 3.08 \times 10^{-6} / (\pi \times (0.01)^4)$

 $\Delta P = 8 \times 0.83 \times 1.5 \times 3.08 \times 10^{-6} / (\pi \times 10^{-8})$

 $\Delta P = 976 Pa$

Reynolds number check:

Re = $\rho vd/\eta$ where $v = Q/(\pi r^2) = 3.08 \times 10^{-6}/(\pi \times 10^{-4}) = 0.098$ m/s Re = $(1.3 \times 10^3 \times 0.098 \times 0.02)/0.83 = 3.08 << 2000$

Answer: $\Delta P = 976 \text{ Pa}$, flow is laminar (Re << 2000)

9.14 Aircraft Wing Lift

Given: $v_{p} = 70 \text{ m/s}$, $v_{p} = 63 \text{ m/s}$, wing area = 2.5 m², $\rho_{a} = 1.3 \text{ kg/m}^3$

Solution: Using Bernoulli's equation (ignoring height difference):

P_lower + 1/2pv_lower² = P_upper + 1/2pv_upper² $\Delta P = P_lower - P_upper = <math>1/2$ p(v_upper² - v_lower²) $\Delta P = 1/2 \times 1.3 \times (70^2 - 63^2) = 1/2 \times 1.3 \times (4900 - 3969) = 1/2 \times 1.3 \times 931 = 605 \text{ Pa}$ Lift force = $\Delta P \times Area = 605 \times 2.5 = 1512 \text{ N}$

Answer: Lift force = $1512 \text{ N} \approx 1.5 \text{ kN}$

9.15 Streamline Flow Analysis

Given: Two figures showing fluid flow patterns

Analysis:

- Figure (a): Possible Streamlines don't cross, consistent with continuity equation
- Figure (b): Impossible Streamlines cross, violating fundamental flow principle

Reason: In steady flow, each point has unique velocity direction. Crossing streamlines would mean a fluid particle could move in two different directions simultaneously, which is physically impossible.

Answer: Figure (b) is incorrect due to crossing streamlines

9.16 Spray Pump Flow Analysis

Given: Tube area = 8.0 cm², 40 holes each 1.0 mm diameter, flow speed in tube = 1.5 m/min

Solution:

```
Tube area: A_1 = 8.0 \text{ cm}^2 = 8.0 \times 10^{-4} \text{ m}^2

Each hole area: a = \pi (0.5 \times 10^{-3})^2 = \pi \times 2.5 \times 10^{-7} \text{ m}^2

Total hole area: A_2 = 40 \times \pi \times 2.5 \times 10^{-7} = \pi \times 10^{-5} \text{ m}^2

Tube speed: v_1 = 1.5 \text{ m/min} = 0.025 \text{ m/s}

Using continuity equation: A_1v_1 = A_2v_2

v_2 = A_1v_1/A_2 = (8.0 \times 10^{-4} \times 0.025)/(\pi \times 10^{-5})

v_2 = 2.0 \times 10^{-5}/(\pi \times 10^{-5}) = 2/\pi = 0.637 \text{ m/s}
```

Answer: Ejection speed = 0.64 m/s

9.17 Soap Film Surface Tension

Given: Weight supported = 1.5×10^{-2} N, slider length = 30 cm

Solution:

Force balance: Weight = Surface tension force $W = 2 \times S \times I$ (factor 2 because film has two surfaces) $1.5 \times 10^{-2} = 2 \times S \times 0.30$ $S = (1.5 \times 10^{-2})/(2 \times 0.30) = 0.025 \text{ N/m}$

Answer: Surface tension = 0.025 N/m = 25 mN/m

9.18 Film Weight Comparison

Given: Figure (a) weight = 4.5×10^{-2} N

Analysis:

- Figure (a): Film stretched across rectangular frame 2 surfaces
- Figure (b): Film in circular loop 2 surfaces, same total length
- **Figure (c):** Film across single edge 1 surface

Solution:

For same liquid and temperature, surface tension S is constant

- (a) $W_a = 2SI$, so $S = W_a/(2I) = 4.5 \times 10^{-2}/(2I)$
- (b) Same total perimeter and 2 surfaces: $W_b = W_a = 4.5 \times 10^{-2} \text{ N}$
- (c) Only 1 surface: $W_c = SI = W_a/2 = 2.25 \times 10^{-2} N$

Answer: (b) 4.5×10^{-2} N, (c) 2.25×10^{-2} N

9.19 Mercury Drop Pressure

Given: r = 3.00 mm, $S_Hg = 4.65 \times 10^{-1} \text{ N/m}$, $P_a = 1.01 \times 10^5 \text{ Pa}$

Solution:

Excess pressure in drop: $\Delta P = 2S/r$ $\Delta P = (2 \times 4.65 \times 10^{-1})/(3.00 \times 10^{-3}) = 0.93/(3.00 \times 10^{-3}) = 310 \text{ Pa}$ Pressure inside drop: P_inside = P_a + ΔP P_inside = $1.01 \times 10^5 + 310 = 1.0131 \times 10^5 \text{ Pa}$

Answer:

- Pressure inside drop = 1.013×10^5 Pa
- Excess pressure = 310 Pa

9.20 Soap Bubble Pressure

Given: r = 5.00 mm, $S = 2.50 \times 10^{-2} \text{ N/m}$, depth = 40.0 cm, relative density = 1.20

Solution:

(a) Excess pressure in soap bubble: $\Delta P = 4S/r$ (two surfaces)

$$\Delta P = (4 \times 2.50 \times 10^{-2})/(5.00 \times 10^{-3}) = 0.1/(5.00 \times 10^{-3}) = 20 \text{ Pa}$$

(b) Pressure at 40 cm depth:

P_outside = P_a +
$$\rho$$
gh = 1.01 × 10⁵ + (1200 × 9.8 × 0.40) = 1.01 × 10⁵ + 4704 = 1.057 × 10⁵ Pa

Pressure inside bubble: P_inside = P_outside + $\Delta P = 1.057 \times 10^5 + 20 = 1.0572 \times 10^5 Pa$

Answer:

- Excess pressure = 20 Pa
- Pressure inside submerged bubble = 1.057×10^5 Pa

KEY FORMULAS REFERENCE

Pressure and Hydrostatics

```
P = F/A (pressure definition)

P = P_a + \rho gh (pressure with depth)

F_2/F_1 = A_2/A_1 (hydraulic machines)
```

Fluid Flow

```
A_1v_1 = A_2v_2 (continuity equation)

P + \frac{1}{2}\rho v^2 + \rho gh = constant (Bernoulli's equation)

v = \sqrt{(2gh)} (Torricelli's law)
```

Viscosity

```
η = (F/A)/(dv/dy)
 (viscosity definition)

F = 6πηav
 (Stokes' law)

v_t = 2a^2(ρ-σ)g/(9η)
 (terminal velocity)
```

Surface Tension

```
S = F/(2I) (surface tension)

P_i - P_o = 2S/r (drop pressure)

P_i - P_o = 4S/r (bubble pressure)

h = (2S \cos \theta)/(\rho ga) (capillary rise)
```

Answer Key Complete - All exercise problems solved with detailed explanations and proper reasoning for JEE/NEET preparation.