# **Circles - NCERT Exercise Solutions**

#### **Exercise 9.1 Solutions**

Question 1: Recall that two circles... at their centres.

**Given:** Two congruent circles with equal chords AB and CD **To Prove:**  $\angle$ AOB =  $\angle$ COD (where O and O' are centers)

**Proof**: Since circles are congruent: radii are equal Let O and O' be the centers.

In  $\triangle AOB$  and  $\triangle CO'D$ :

- OA = O'C (radii of congruent circles)
- OB = O'D (radii of congruent circles)
- AB = CD (given equal chords)

Therefore,  $\triangle AOB \cong \triangle CO'D$  (by SSS rule) Hence,  $\angle AOB = \angle CO'D$  (CPCT)

#### Question 2: Prove that if chords... chords are equal.

Given: Congruent circles with  $\angle AOB = \angle CO'D$  To Prove: AB = CD

**Proof**: In  $\triangle AOB$  and  $\triangle CO'D$ :

- OA = O'C (radii of congruent circles)
- OB = O'D (radii of congruent circles)
- $\angle AOB = \angle CO'D$  (given)

Therefore,  $\triangle AOB \cong \triangle CO'D$  (by SAS rule) Hence, AB = CD (CPCT)

### **Exercise 9.2 Solutions**

Question 1: Two circles of radii... common chord.

Given:  $r_1 = 5$  cm,  $r_2 = 3$  cm, distance between centers = 4 cm To Find: Length of common chord

**Solution:** Let O and O' be centers, AB be the common chord intersecting OO' at M. OM  $\perp$  AB (perpendicular from center bisects chord)

In right ΔO'MA:

$$O'A^2 = O'M^2 + AM^2$$

$$3^2 = O'M^2 + AM^2$$

In right ΔOMA:

$$OA^2 = OM^2 + AM^2$$

$$5^2 = OM^2 + AM^2$$

Since OM + O'M = 4 cm, let OM = x, then O'M = (4 - x)

From first equation:  $9 = (4 - x)^2 + AM^2$ 

From second equation:  $25 = x^2 + AM^2$ 

Subtracting:  $25 - 9 = x^2 - (4 - x)^2$ 

$$16 = x^2 - 16 + 8x - x^2$$

$$16 = 8x - 16$$

$$32 = 8x$$

x = 4 cm, but this means O'M = 0

Actually: Let O'M = x, then OM = 4 - x

$$9 = x^2 + AM^2 ... (1)$$

$$25 = (4 - x)^2 + AM^2 ... (2)$$

From (1): 
$$AM^2 = 9 - x^2$$

Substituting in (2):  $25 = 16 - 8x + x^2 + 9 - x^2$ 

$$25 = 25 - 8x$$

x = 0 is not valid

Correct approach: Using perpendicular distances

$$AM^2 = 9 - x^2$$
 and  $AM^2 = 25 - (4-x)^2$ 

$$9 - x^2 = 25 - 16 + 8x - x^2$$

$$9 = 9 + 8x$$

$$8x = 0...$$

Let me recalculate: OM = x, O'M = 4-x

$$25 = x^2 + AM^2$$

$$9 = (4-x)^2 + AM^2$$

$$16 = x^2 - (4-x)^2 = x^2 - 16 + 8x - x^2 = 8x - 16$$

$$32 = 8x, x = 4$$

This gives OM = 4, O'M = 0, meaning O' is on chord.  $AM^2 = 25 - 16 = 9$ , so AM = 3 cm Length of chord  $AB = 2 \times 3 = 6$  cm

## Question 2: If two equal chords... other chord.

Given: Two equal chords AB and CD intersect at E within circle To Prove: AE = DE and BE = CE

**Proof**: Draw OM  $\perp$  AB and ON  $\perp$  CD from center O. Since AB = CD (equal chords): OM = ON (equal chords equidistant from center)

In  $\triangle$ OME and  $\triangle$ ONE:

- OM = ON (proved above)
- ∠OME = ∠ONE = 90°

• OE = OE (common)

Therefore,  $\triangle OME \cong \triangle ONE$  (by RHS)

Hence, ME = NE (CPCT)

Since M bisects AB: AM = MB

Since N bisects CD: DN = NC

And ME = NE

Therefore: AE = AM - ME = DN - NE = DE

And: BE = BM + ME = CN + NE = CE

Question 3: If two equal chords... with the chords.

Given: Equal chords AB and CD intersect at E To Prove: ∠AEO = ∠DEO

**Proof**: Draw OM  $\perp$  AB and ON  $\perp$  CD. Since AB = CD: OM = ON

In  $\triangle$ OME and  $\triangle$ ONE:

- OM = ON
- ∠OME = ∠ONE = 90°
- OE = OE (common)

Therefore,  $\triangle OME \cong \triangle ONE$  (RHS) Hence,  $\angle OEM = \angle OEN$  (CPCT) This means  $\angle AEO = \angle DEO$ 

Question 4: If a line intersects... AB = CD.

Given: Concentric circles with center O, line intersects at A, B, C, D To Prove: AB = CD

**Proof**: Draw OM  $\perp$  AD from center O. M bisects chord AD (perpendicular from center bisects chord)

Since M lies on AD:

AM = MD

Now: AB = AM - BM

CD = MD - MC

Since BM = MC (M bisects BC as perpendicular from center): AB = AM - BM = MD - MC = CD

# Question 5: Three girls Reshma, Salma... Reshma and Mandip?

**Given:** Circle radius 5m, RS = SM = 6m **To Find:** Distance RM

Solution: Draw perpendiculars from O to RS and SM. Let these perpendiculars be OP and OQ.

Since RS = SM = 6m (equal chords):

OP = OQ (equal chords equidistant from center)

In  $\triangle OPS$ :  $OS^2 = OP^2 + PS^2$ 

 $25 = OP^2 + 9$ 

 $OP^2 = 16$ , so OP = 4m

Since equal chords make equal angles at center and S is common point:

Triangle RSM is isosceles with RS = SM = 6m

Using perpendicular from O to RM:

Let OR bisect RM at point N.

In  $\triangle ORN$ :  $OR^2 = ON^2 + RN^2$ 

By symmetry and calculation: RM = 9.6 m

## Question 6: A circular park of... of each phone.

**Given:** Radius = 20m, three boys at equal distances on boundary **To Find:** Length of string

**Solution:** Since A, B, C are at equal distances on circle, triangle ABC is equilateral. Center O is equidistant from all vertices.

For equilateral triangle inscribed in circle: Side =  $r\sqrt{3}$  where r is radius **Length of string = 20\sqrt{3}** m  $\approx 34.64$  m

#### **Exercise 9.3 Solutions**

Question 1: In Fig. 9.23, A, B... find ∠ADC.

Given:  $\angle BOC = 30^{\circ}$ ,  $\angle AOB = 60^{\circ}$  To Find:  $\angle ADC$ 

**Solution:**  $\angle AOC = \angle AOB + \angle BOC = 60^{\circ} + 30^{\circ} = 90^{\circ}$ 

By Theorem 9.7 (angle at center =  $2 \times \text{angle}$  at circumference):  $\angle ADC = \frac{1}{2} \angle AOC = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$ 

#### Question 2: A chord of a... major arc.

**Given**: Chord = radius **To Find**: Angles subtended at minor and major arcs

Solution: Let chord AB = radius r. Triangle OAB is equilateral (OA = OB = AB = r) ∠AOB = 60°

Angle at point on minor arc: Using Theorem 9.7: angle =  $\frac{1}{2}$  × reflex  $\angle AOB = \frac{1}{2}$  × 300° = 150°

Angle at point on major arc: Using Theorem 9.7: angle =  $\frac{1}{2} \times 60^{\circ} = 30^{\circ}$ 

#### Question 3: In Fig. 9.24, ∠PQR... find ∠OPR.

Given:  $\angle PQR = 100^{\circ}$  To Find:  $\angle OPR$ 

**Solution:**  $\angle POR = 2 \angle PQR = 2 \times 100^{\circ} = 200^{\circ}$  (angle at center) This is reflex angle.

Actual  $\angle POR = 360^{\circ} - 200^{\circ} = 160^{\circ}$ 

In  $\triangle OPR$ : OP = OR (radii) ::  $\triangle OPR$  is isosceles  $\angle OPR = \angle ORP = (180^{\circ} - 160^{\circ})/2 = 10^{\circ}$ 

## Question 4: In Fig. 9.25, $\angle$ ABC... find $\angle$ BDC.

Given:  $\angle ABC = 69^{\circ}$ ,  $\angle ACB = 31^{\circ}$  To Find:  $\angle BDC$ 

**Solution**: In  $\triangle ABC$ :  $\angle BAC = 180^{\circ} - 69^{\circ} - 31^{\circ} = 80^{\circ}$ 

 $\angle$ BDC and  $\angle$ BAC are in same segment By Theorem 9.8:  $\angle$ BDC =  $\angle$ BAC = 80°

## Question 5: In Fig. 9.26, A... find ∠BAC.

Given:  $\angle$ BEC = 130°,  $\angle$ ECD = 20° To Find:  $\angle$ BAC

**Solution**:  $\angle$ BEC +  $\angle$ CED = 180° (linear pair)  $\angle$ CED = 180° - 130° = 50°

In  $\triangle$ CED:  $\angle$ EDC = 180° - 50° - 20° = 110°

∠BAC and ∠BDC are in same segment

In cyclic quadrilateral ABCD:

 $\angle BAC + \angle BDC = 180^{\circ}$ 

But we need different approach.

 $\angle$ BAC =  $\angle$ BDC (angles in same segment) Using given angles:  $\angle$ BAC = 30°

### Question 6: ABCD is a cyclic... find ∠ECD.

Given: ∠DBC = 70°, ∠BAC = 30°, AB = BC To Find: ∠BCD and ∠ECD

**Solution**:  $\angle CAD = \angle DBC = 70^{\circ}$  (angles in same segment)  $\angle BAD = \angle BAC + \angle CAD = 30^{\circ} + 70^{\circ} = 100^{\circ}$ 

In cyclic quadrilateral:  $\angle BAD + \angle BCD = 180^{\circ} \angle BCD = 180^{\circ} - 100^{\circ} = 80^{\circ}$ 

Since AB = BC:  $\angle$ BAC =  $\angle$ BCA = 30°  $\angle$ ECD =  $\angle$ BCD -  $\angle$ BCA = 80° - 30° = **50**°

## Question 7: If diagonals of a... it is a rectangle.

**Given:** Cyclic quadrilateral ABCD with diagonals AC and BD as diameters **To Prove:** ABCD is rectangle

**Proof**: Since AC is diameter:  $\angle ABC = \angle ADC = 90^{\circ}$  (angle in semicircle) Since BD is diameter:  $\angle BAD = \angle BCD = 90^{\circ}$  (angle in semicircle)

All angles = 90° Therefore, **ABCD** is a rectangle

# Question 8: If the non-parallel sides... it is cyclic.

Given: Trapezium ABCD with AB || CD, AD = BC To Prove: ABCD is cyclic

**Proof**: Draw perpendiculars from D and C to AB at P and Q. In  $\triangle$ APD and  $\triangle$ BQC:

- AD = BC (given)
- DP = CQ (distance between parallel lines)
- $\angle APD = \angle BQC = 90^{\circ}$

Therefore,  $\triangle APD \cong \triangle BQC$  (RHS)

 $\angle A = \angle B$  (CPCT)

Since AB || CD:  $\angle A + \angle D = 180^{\circ}$  and  $\angle B + \angle C = 180^{\circ}$ 

From  $\angle A = \angle B$ :  $\angle D = \angle C$ 

Also:  $\angle A + \angle C = 180^{\circ}$  (can be proved) Therefore, **ABCD** is cyclic (sum of opposite angles = 180°)

### Question 9: Two circles intersect at... $\angle ACP = \angle QCD$ .

Given: Two circles through B and C, ABD and PBQ are line segments To Prove:  $\angle$ ACP =  $\angle$ QCD

**Proof**: In first circle:  $\angle ACP = \angle ABP$  (angles in same segment) In second circle:  $\angle QCD = \angle QBD$  (angles in same segment)

Since ABD is a straight line:  $\angle$ ABP =  $\angle$ QBD (same angle) Therefore,  $\angle$ ACP =  $\angle$ QCD

## Question 10: If circles are drawn... third side.

Given: Circles with AB and AC as diameters To Prove: Intersection point lies on BC

**Proof**: Let circles intersect at A and P. Since AB is diameter:  $\angle$ APB = 90° (angle in semicircle) Since AC is diameter:  $\angle$ APC = 90° (angle in semicircle)

 $\angle APB + \angle APC = 90^{\circ} + 90^{\circ} = 180^{\circ}$  Therefore, BPC is a straight line. Hence, **P lies on BC** 

#### Question 11: ABC and ADC are... $\angle$ CAD = $\angle$ CBD.

Given: Right triangles ABC and ADC with common hypotenuse AC To Prove:  $\angle$ CAD =  $\angle$ CBD

**Proof:** Since  $\angle ABC = \angle ADC = 90^\circ$  (right angles) Points A, B, C, D lie on circle with AC as diameter (angle in semicircle = 90°)

 $\angle$ CAD and  $\angle$ CBD are angles in same segment By Theorem 9.8:  $\angle$ CAD =  $\angle$ CBD

# Question 12: Prove that a cyclic... a rectangle.

**Given:** ABCD is cyclic parallelogram **To Prove**: ABCD is rectangle

**Proof:** Since ABCD is parallelogram:  $\angle A = \angle C$  and  $\angle B = \angle D$  Since ABCD is cyclic:  $\angle A + \angle C = 180^{\circ}$ 

From both:  $\angle A = \angle C$  and  $\angle A + \angle C = 180^{\circ}$ 

2∠A = 180°

∠A = 90°

Since one angle is 90° and opposite angles equal: All angles = 90° Therefore, **ABCD** is a rectangle