Chapter 1: Chemical Reactions and Equations

Exercise Solutions

1. Which of the statements about the reaction below are incorrect?

$$2PbO(s) + C(s) \rightarrow 2Pb(s) + CO_2(g)$$

- (a) Lead is getting reduced.
- (b) Carbon dioxide is getting oxidised.
- (c) Carbon is getting oxidised.
- (d) Lead oxide is getting reduced.

(i) (a) and (b)

Solution: In this reaction:

- PbO loses oxygen → Pb (reduction)
- C gains oxygen → CO₂ (oxidation)
- Therefore: (a) correct, (b) incorrect, (c) correct, (d) correct Answer: (i) (a) and (b)

2. $Fe_2O_3 + 2AI \rightarrow AI_2O_3 + 2Fe$

The above reaction is an example of a:

- (a) combination reaction
- (b) double displacement reaction
- (c) decomposition reaction
- (d) displacement reaction

Solution: Aluminum displaces iron from iron oxide. This is a displacement reaction. Answer: **(d) displacement reaction**

3. What happens when dilute hydrochloric acid is added to iron fillings?

- (a) Hydrogen gas and iron chloride are produced
- (b) Chlorine gas and iron hydroxide are produced
- (c) No reaction takes place
- (d) Iron salt and water are produced

Solution: Fe + 2HCl \rightarrow FeCl₂ + H₂ Iron reacts with HCl to produce hydrogen gas and iron chloride.

Answer: (a) Hydrogen gas and iron chloride are produced

4. What is a balanced chemical equation? Why should chemical equations be balanced?

Solution: A balanced chemical equation has equal number of atoms of each element on both sides.

Why balance equations:

- Law of conservation of mass atoms cannot be created or destroyed
- Mass of reactants = Mass of products
- Helps in stoichiometric calculations

5. Translate the following statements into chemical equations and then balance them:

a) Hydrogen gas combines with nitrogen to form ammonia $N_2 + 3H_2 \rightarrow 2NH_3$

- b) Hydrogen sulphide gas burns in air to give water and sulphur dioxide $2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$
- c) Barium chloride reacts with aluminium sulphate to give aluminium chloride and a precipitate of barium sulphate $3BaCl_2 + Al_2(SO_4)_3 \rightarrow 2AlCl_3 + 3BaSO_4$
- d) Potassium metal reacts with water to give potassium hydroxide and hydrogen gas $2K + 2H_2O \rightarrow 2KOH + H_2$

6. Balance the following chemical equations:

a)
$$HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + H_2O 2HNO_3 + Ca(OH)_2 \rightarrow Ca(NO_3)_2 + 2H_2O$$

b) NaOH +
$$H_2SO_4 \rightarrow Na_2SO_4 + H_2O$$
 2NaOH + $H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

d)
$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + HCI BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCI$$

7. Write balanced chemical equations for the following reactions:

- a) Calcium hydroxide + Carbon dioxide \rightarrow Calcium carbonate + Water $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$
- b) Zinc + Silver nitrate \rightarrow Zinc nitrate + Silver Zn + 2AgNO₃ \rightarrow Zn(NO₃)₂ + 2Ag
- c) Aluminium + Copper chloride → Aluminium chloride + Copper 2Al + 3CuCl₂ → 2AlCl₃ + 3Cu
- d) Barium chloride + Potassium sulphate \rightarrow Barium sulphate + Potassium chloride $BaCl_2 + K_2SO_4 \rightarrow BaSO_4 + 2KCl$

8. Write balanced chemical equations and identify the type of reaction:

a) Potassium bromide(aq) + Barium iodide(aq) → Potassium iodide(aq) + Barium bromide(s) 2KBr + Bal₂ → 2Kl + BaBr₂ Type: Double displacement reaction

- b) Zinc carbonate(s) \rightarrow Zinc oxide(s) + Carbon dioxide(g) ZnCO₃ \rightarrow ZnO + CO₂ Type: Decomposition reaction
- **c)** Hydrogen(g) + Chlorine(g) → Hydrogen chloride(g) H₂ + Cl₂ → 2HCl Type: Combination reaction
- d) Magnesium(s) + Hydrochloric acid(aq) → Magnesium chloride(aq) + Hydrogen(g) Mg + 2HCl → MgCl₂ + H₂ Type: Displacement reaction

9. What does one mean by exothermic and endothermic reactions? Give examples.

Solution: Exothermic reactions: Release heat energy

- Examples: Combustion of methane, respiration, neutralization
- $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + Heat$

Endothermic reactions: Absorb heat energy

- Examples: Decomposition reactions, photosynthesis
- CaCO₃ + Heat → CaO + CO₂

10. Why is respiration considered an exothermic reaction? Explain.

Solution: Respiration releases energy when glucose is broken down: $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$ (ATP)

This energy is used for:

- Body functions
- Movement
- Maintaining body temperature
- Cellular processes

11. Why are decomposition reactions called the opposite of combination reactions? Write equations.

Solution: Combination: Two or more reactants \rightarrow Single product A + B \rightarrow AB

Decomposition: Single reactant \rightarrow Two or more products AB \rightarrow A + B

Examples:

- Combination: 2H₂ + O₂ → 2H₂O
- Decomposition: 2H₂O → 2H₂ + O₂

12. Write one equation each for decomposition reactions where energy is supplied in the form of heat, light or electricity.

Solution: Heat (Thermal decomposition): CaCO₃ + Heat → CaO + CO₂

Light (Photodecomposition): 2AgCl + Sunlight → 2Ag + Cl₂

Electricity (Electrolysis): $2H_2O + Electricity \rightarrow 2H_2 + O_2$

13. What is the difference between displacement and double displacement reactions? Write equations.

Solution: Displacement reaction: More reactive element displaces less reactive element A + BC \rightarrow AC + B Example: Zn + CuSO₄ \rightarrow ZnSO₄ + Cu

Double displacement reaction: Exchange of ions between compounds AB + CD \rightarrow AD + CB

Example: AgNO₃ + NaCl → AgCl + NaNO₃

14. In the refining of silver, the recovery of silver from silver nitrate solution involved displacement by copper metal. Write down the reaction involved.

Solution: $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$

Copper is more reactive than silver, so it displaces silver from silver nitrate solution.

15. What do you mean by a precipitation reaction? Explain by giving examples.

Solution: Precipitation reaction: Reaction that produces an insoluble solid (precipitate)

Examples:

- AgNO₃ + NaCl → AgCl↓ + NaNO₃ (white precipitate)
- BaCl₂ + Na₂SO₄ → BaSO₄↓ + 2NaCl (white precipitate)

The arrow pointing down (1) indicates precipitate formation.

16. Explain oxidation and reduction in terms of gain or loss of oxygen with two examples each:

Solution: a) Oxidation (Gain of oxygen):

- 2Cu + O₂ → 2CuO (copper gains oxygen)
- $C + O_2 \rightarrow CO_2$ (carbon gains oxygen)

b) Reduction (Loss of oxygen):

- CuO + H₂ → Cu + H₂O (copper oxide loses oxygen)
- ZnO + C → Zn + CO (zinc oxide loses oxygen)

17. A shiny brown coloured element 'X' on heating in air becomes black in colour. Name the element 'X' and the black coloured compound formed.

Solution:

- Element X = Copper (Cu)
- Black compound = Copper oxide (CuO)
- Reaction: 2Cu + O₂ → 2CuO

18. Why do we apply paint on iron articles?

Solution: Paint prevents iron from rusting by:

- Creating a barrier between iron and air/moisture
- Preventing oxygen and water from reaching iron surface
- Stopping the oxidation process that causes rust formation

19. Oil and fat containing food items are flushed with nitrogen. Why?

Solution:

- Prevents rancidity (oxidation of fats and oils)
- Nitrogen is inert gas doesn't react with food
- Displaces oxygen that causes spoilage
- Extends shelf life of packaged foods

20. Explain the following terms with one example each:

- a) Corrosion Attack of metals by moisture, acids, etc. Example: Rusting of iron $4Fe + 3O_2 + 2xH_2O \rightarrow 2Fe_2O_3.xH_2O$
- **b) Rancidity** Oxidation of fats and oils causing bad smell and taste. Example: Butter becoming rancid when exposed to air for long time.

Answer Key:

1. (i), 2. (d), 3. (a), 4-20. Descriptive answers as provided above