Organic Chemistry - Q&A Study Guide

Unit 8: Basic Principles and Techniques

General Introduction & History

Q1: Who disproved the vital force theory and how? **A:** F. Wöhler in 1828 synthesized urea (an organic compound) from ammonium cyanate (an inorganic compound), proving that organic compounds could be made in the laboratory without a "vital force."

Q2: What were the key historical milestones in early organic chemistry? A:

- 1780s: Distinction between organic and inorganic compounds
- 1828: Wöhler synthesized urea
- 1845: Kolbe synthesized acetic acid
- 1856: Berthelot synthesized methane

Q3: Why are organic compounds vital for life? A: They form essential biological molecules like DNA (genetic information), proteins (blood, muscles, skin), and are used in materials like clothing, fuels, polymers, dyes, and medicines.

Carbon Hybridization & Shapes

Q4: What are the three hybridization states of carbon and their characteristics? A:

- sp³: Tetrahedral, 109.5°, found in alkanes (CH₄)
- sp²: Trigonal planar, 120°, found in alkenes (C₂H₄)
- sp: Linear, 180°, found in alkynes (C₂H₂)

Q5: How does hybridization affect bond properties? A:

• Bond strength order: sp > sp² > sp³

• Bond length order: sp < sp² < sp³

• Electronegativity order: sp > sp² > sp³

• More s-character = shorter, stronger bonds, higher electronegativity

Q6: What are the key characteristics of π bonds? A:

- Formed by lateral overlap of parallel p orbitals
- Restrict rotation around C=C bonds
- Electrons are easily available to attacking reagents
- Most reactive centers in molecules with multiple bonds

Q7: How many σ and π bonds are in HC=C-CH=CH-CH₃? A: σ bonds: C-C (4) + C-H (6) = 10 total; π bonds: C=C (2) + C=C (1) = 3 total

Structural Representations

Q8: What are the different types of structural formulas? A:

- Complete: Shows all atoms and bonds
- **Condensed**: Omits some bonds, uses subscripts (CH₃CH₃)
- Bond-line: Only shows skeletal structure, C and H implied

Q9: How do you represent 3D structures on paper? A:

- **Solid wedge (▲)**: Bond coming toward you
- **Dashed wedge (△)**: Bond going away from you

• Normal line (—): Bond in the plane of paper

Q10: What are the three types of molecular models? A:

- Framework: Shows only bonds, emphasizes bonding pattern
- **Ball-and-stick**: Shows atoms as balls, bonds as sticks
- **Space-filling**: Shows relative atomic sizes based on van der Waals radii

Classification of Organic Compounds

Q11: How are organic compounds classified structurally? A:

- **Acyclic (Aliphatic)**: Open chain compounds (straight or branched)
- **Cyclic**: Ring compounds
 - **Alicyclic**: Saturated rings (cyclohexane)
 - **Aromatic**: Special ring compounds (benzene)

Q12: What is a functional group? A: An atom or group of atoms that determines the characteristic chemical properties of organic compounds. Examples: -OH, -CHO, -COOH.

Q13: What is a homologous series? A: A group of organic compounds with the same functional group where successive members differ by a -CH₂ unit. Examples: alkanes, alcohols, aldehydes.

IUPAC Nomenclature

Q14: What are the rules for naming branched alkanes? A:

- 1. Find the longest carbon chain (parent)
- 2. Number to give substituents lowest numbers

- 3. Name and locate substituents with numbers
- 4. List substituents alphabetically
- 5. Use di-, tri-, tetra- for identical groups

Q15: What is the priority order of functional groups for nomenclature? A: $-COOH > -SO_3H > -COOR > -COOI > -CONH_2 > -CN > -CHO > >C=O > -OH > -NH_2 > >C=C < > -C=C-$

Q16: How do you name substituted benzene compounds? A:

- Monosubstituted: substituent + benzene
- **Disubstituted**: Use numbers or ortho (1,2), meta (1,3), para (1,4)
- **Phenyl**: C₆H₅- when benzene is a substituent

Q17: What is the IUPAC name of CH₃-CH(CH₃)-CH₂-CH(CI)-CH₃? A: 2-Chloro-4-methylpentane

Isomerism

Q18: What are the types of structural isomerism? A:

- Chain isomerism: Different carbon skeletons
- Position isomerism: Different positions of functional groups
- Functional group isomerism: Different functional groups
- Metamerism: Different alkyl groups around functional group

Q19: Give examples of functional group isomers with formula C₃H₆O. A: CH₃-CO-CH₃ (propanone, ketone) and CH₃-CH₂-CHO (propanal, aldehyde)

Q20: What is stereoisomerism? A: Compounds with same molecular formula and connectivity but different spatial arrangements. Types: geometrical and optical isomerism.

Reaction Mechanisms

Q21: What is the difference between heterolytic and homolytic bond cleavage? A:

- **Heterolytic**: Unequal breaking, electron pair goes to one fragment, forms ions (carbocation + anion)
- Homolytic: Equal breaking, one electron to each fragment, forms free radicals

Q22: What is the stability order of carbocations? A: Tertiary (3°) > Secondary (2°) > Primary (1°) > Methyl (CH₃⁺) *Reason*: Greater alkyl substitution provides more hyperconjugation stability.

Q23: What are nucleophiles and electrophiles? A:

- **Nucleophiles**: Electron donors, nucleus-seeking (HO⁻, CN⁻, NH₃)
- **Electrophiles**: Electron acceptors, electron-seeking (H⁺, carbocations, BF₃)

Q24: How do you show electron movement in reactions? A:

- **Curved arrows**: Show electron pair movement
- Half-headed arrows: Show single electron movement
- Arrow starts from electron source, points to destination

Electronic Effects

Q25: What is the inductive effect? A: Polarization of σ -bonds due to electronegativity differences, transmitted through the chain but decreases with distance.

Q26: Which groups show +I and -I effects? A:

- **+I (electron donating)**: Alkyl groups (-CH₃, -C₂H₅)
- -I (electron withdrawing): Halogens, -NO₂, -CN, -COOH

Q27: What is resonance and what are the rules for resonance structures? A: Electron delocalization in conjugated systems. Rules:

- Same nuclear positions
- Same number of unpaired electrons
- More covalent bonds = more stable
- Complete octets = more stable
- Less charge separation = more stable

Q28: What is the difference between +R and -R effects? A:

- +R: Electron donation into conjugated system (-OH, -OR, -NH₂, halogens)
- **-R**: Electron withdrawal from conjugated system (-COOH, -CHO, -CN, -NO₂)

Q29: What is hyperconjugation? A: Delocalization of σ -electrons (especially C-H bonds) into adjacent p-orbitals or π -systems. Stabilizes carbocations and free radicals.

Q30: Why is $(CH_3)_3C^+$ more stable than $CH_3CH_2^+$? A: $(CH_3)_3C^+$ has nine C-H bonds available for hyperconjugation, while $CH_3CH_2^+$ has fewer, providing less stabilization.

Purification Methods

Q31: When would you use each purification method? A:

- **Sublimation**: Separate sublimable from non-sublimable compounds
- **Simple distillation**: Large b.p. differences (>25°C) or volatile from non-volatile
- Fractional distillation: Small b.p. differences (<25°C)
- **Steam distillation**: Steam-volatile, water-immiscible compounds
- Crystallization: Different solubilities in same solvent

Q32: What is the principle of steam distillation? A: The mixture boils when sum of vapor pressures $(p_1 + p_2)$ equals atmospheric pressure, allowing compounds to distill below their normal boiling points.

Q33: What is Rf value in TLC? A: Rf = Distance moved by substance / Distance moved by solvent front Used to identify compounds in thin layer chromatography.

Q34: What are the two main types of chromatography? A:

- **Adsorption**: Based on differential adsorption (TLC, column)
- **Partition**: Based on differential partitioning between phases (paper chromatography)

Qualitative Analysis

Q35: How do you test for carbon and hydrogen in organic compounds? A:

- Heat compound with CuO
- **Carbon**: Forms CO₂ (test with lime water → turbidity)
- Hydrogen: Forms H₂O (test with anhydrous CuSO₄ → turns blue)

Q36: What is Lassaigne's test and why is it used? A: Fusion with metallic sodium converts covalent N, S, halogens to ionic forms (NaCN, Na₂S, NaX) which can be detected by specific tests.

Q37: How do you test for nitrogen using Lassaigne's extract? A: Boil extract with FeSO₄, then acidify with H_2SO_4 . Prussian blue color indicates nitrogen (Fe₄[Fe(CN)₆]₃ formation).

Q38: How do you distinguish between Cl⁻, Br⁻, and I⁻? A: Add AgNO₃ after acidifying with HNO₃:

- **CI**⁻: White AgCl (soluble in NH₄OH)
- **Br**⁻: Pale yellow AgBr (sparingly soluble in NH₄OH)

• I⁻: Yellow AgI (insoluble in NH₄OH)

Q39: What interferes with halogen tests and how is it removed? A: CN⁻ and S²⁻ interfere. Remove by boiling extract with concentrated HNO₃ before adding AgNO₃.

Quantitative Analysis

Q40: How do you calculate percentage of carbon from CO₂ produced? A: % Carbon = (12/44) × (mass of CO₂/mass of compound) × 100

Q41: How do you calculate percentage of hydrogen from H_2O produced? A: % Hydrogen = $(2/18) \times (\text{mass of } H_2O/\text{mass of compound}) \times 100$

Q42: What is the difference between Dumas and Kjeldahl methods? A:

- Dumas: Heat with CuO, collect N₂ gas, measure volume
- **Kjeldahl**: Convert to NH₃, absorb in acid, back-titrate
- **Kjeldahl limitation**: Doesn't work for nitro, azo, or ring nitrogen

Q43: Calculate % nitrogen if 0.3g compound gives 50mL N₂ at 300K and 715mm pressure. A:

- Correct pressure = 715 15 = 700mm (subtract aqueous tension)
- Volume at STP = $(273 \times 700 \times 50)/(300 \times 760) = 41.9 \text{ mL}$
- $\% N = (28 \times 41.9 \times 100)/(22400 \times 0.3) = 17.46\%$

Q44: In Carius method, how do you calculate percentage of halogen? A: % Halogen = (Atomic mass of X/Molecular mass of AgX) \times (mass of AgX/mass of compound) \times 100

Q45: Why is oxygen usually determined by difference? A: Direct oxygen determination is complex, so it's calculated as: % O = 100 - (% of all other elements)

Q46: What is the molecular mass of BaSO₄ and how is it used? A: BaSO₄ = 233 g/mol. For sulfur estimation: % S = $(32/233) \times (mass of BaSO_4/mass of compound) \times 100$

Problem-Solving Questions

Q47: 0.246g of compound gives 0.198g CO₂ and 0.1014g H₂O. Find % C and H. A:

- % C = $(12 \times 0.198 \times 100)/(44 \times 0.246) = 21.95\%$
- % H = $(2 \times 0.1014 \times 100)/(18 \times 0.246) = 4.58\%$

Q48: In Kjeldahl method, 0.5g compound neutralizes 10mL of 1M H₂SO₄. Find % N. A:

- 10mL 1M H₂SO₄ = 20mL 1M NH₃
- 1000mL 1M NH₃ contains 14g N
- 20mL contains (14 × 20)/1000 = 0.28g N
- $\% N = (0.28 \times 100)/0.5 = 56\%$

Q49: 0.15g compound gives 0.12g AgBr in Carius method. Find % Br. A:

- AgBr = 188 g/mol, Br = 80 g/mol
- % Br = $(80 \times 0.12 \times 100)/(188 \times 0.15) = 34.04\%$

Q50: Draw resonance structures for CH₃COO⁻. A:

$$CH_3-C(=O)-O^- \leftrightarrow CH_3-C(^-)-O=O$$

The actual structure is a hybrid with partial double bond character in both C-O bonds.

Key Constants & Formulas

Q51: What are the important molar volumes and masses to remember? A:

- 1 mole gas at STP = 22,400 mL
- $N_2 = 28$ g/mol, $CO_2 = 44$ g/mol, $H_2O = 18$ g/mol
- AgCl = 143.5, AgBr = 188, AgI = 235 g/mol
- $BaSO_4 = 233 \text{ g/mol}$

Q52: What is the general formula for nitrogen percentage in Dumas method? A: % N = (28 × Volume at STP × 100)/(22400 × mass of compound)

Q53: What is the bond length order for carbon bonds? A: C=C (120 pm) < C=C (134 pm) < C-C (154 pm) Benzene C-C = 139 pm (intermediate between single and double)

Application & Analysis

Q54: Why does benzene have equal C-C bond lengths? A: Due to resonance between two Kekulé structures, all C-C bonds have partial double bond character (139 pm), intermediate between single (154 pm) and double (134 pm) bonds.

Q55: Which is more stable: O₂NCH₂CH₂O⁻ or CH₃CH₂O⁻? A: O₂NCH₂CH₂O⁻ is more stable because the nitro group (-NO₂) withdraws electron density through the inductive effect, stabilizing the negative charge.

Q56: Why are π bonds more reactive than σ bonds? A: π electrons are farther from the nucleus, less tightly held, and more available to attacking reagents compared to σ electrons.

Q57: How does hyperconjugation explain alkyl groups as electron donors? A: C-H σ bonds of alkyl groups can overlap with adjacent p orbitals or π systems, donating electron density and stabilizing positive charges or electron-deficient systems.

Q58: Why is steam distillation useful for essential oils? A: Essential oils are often heat-sensitive and have high boiling points. Steam distillation allows them to vaporize at temperatures below 100°C, preventing decomposition.

Q59: Why can't Kjeldahl method be used for all nitrogen compounds? A: It cannot convert nitrogen in nitro groups (-NO₂), azo groups (-N=N-), or heterocyclic rings (like pyridine) to ammonium sulfate under the reaction conditions.

Q60: What makes tertiary carbocations more stable than primary ones? A: Tertiary carbocations have three alkyl groups providing hyperconjugation stabilization through C-H σ bonds, while primary carbocations have only one alkyl group for stabilization.