Triangles - Formula Sheet

Chapter 7 - Class 9 Mathematics

PAGE 1: CONGRUENCE BASICS

Definition of Congruence

Two triangles are congruent if:

- All three sides are equal
- All three angles are equal
- One triangle can be superimposed on the other

Notation: $\triangle ABC \cong \triangle PQR$

Important Points

- CPCT: Corresponding Parts of Congruent Triangles are equal
- Vertex Correspondence: $A \leftrightarrow P$, $B \leftrightarrow Q$, $C \leftrightarrow R$
- Order of vertices matters: $\triangle ABC \cong \triangle PQR \checkmark$, but $\triangle ABC \cong \triangle QPR \ X$

Congruence Criteria (Rules)

1. SAS (Side-Angle-Side) - AXIOM

Two sides and the included angle

• AB = PQ

- AC = PR
- $\angle A = \angle P$ Then: $\triangle ABC \cong \triangle PQR$

Key: Angle must be between the two sides

2. ASA (Angle-Side-Angle) - THEOREM

Two angles and the included side

- $\angle B = \angle Q$
- BC = QR
- $\angle C = \angle R$ Then: $\triangle ABC \cong \triangle PQR$

Key: Side must be between the two angles

3. AAS (Angle-Angle-Side) - THEOREM

Two angles and a corresponding side

- ∠A = ∠P
- $\angle B = \angle Q$
- BC = QR (or any corresponding side) Then: $\triangle ABC \cong \triangle PQR$

Note: Third angle is automatically equal (angle sum = 180°)

4. SSS (Side-Side-Side) - THEOREM

All three sides equal

- AB = PQ
- BC = QR
- AC = PR Then: $\triangle ABC \cong \triangle PQR$

5. RHS (Right angle-Hypotenuse-Side) - THEOREM

For right triangles only

- $\angle B = \angle Q = 90^{\circ}$
- AC = PR (hypotenuse)
- AB = PQ (one side) **Then**: \triangle ABC \cong \triangle PQR

Invalid Rules X

- SSA or ASS: NOT a valid congruence rule
- AAA: Only shows similarity, not congruence
- Angle must be included for SAS to work

PAGE 2: ISOSCELES TRIANGLE PROPERTIES

Definition

Isosceles Triangle: A triangle with two equal sides

Theorem 7.2: Angles Opposite to Equal Sides

If two sides of a triangle are equal, then angles opposite to them are equal

Formula: If AB = AC, then $\angle B = \angle C$

Proof Method: Draw angle bisector from A to BC, use SAS congruence

Theorem 7.3: Sides Opposite to Equal Angles (CONVERSE)

If two angles of a triangle are equal, then sides opposite to them are equal

Formula: If $\angle B = \angle C$, then AB = AC

Proof Method: Use ASA congruence rule

Equilateral Triangle

All sides equal: AB = BC = CA All angles equal: $\angle A = \angle B = \angle C = 60^{\circ}$

Formula: Each angle of equilateral triangle = 60°

Proof:

- All sides equal → all angles equal (Theorem 7.3)
- $\angle A + \angle B + \angle C = 180^{\circ}$
- 3∠A = 180°
- ∠A = 60°

Important Results for Isosceles Triangles

Perpendicular from Vertex to Base

If \triangle ABC is isosceles with AB = AC, and AD \perp BC:

- 1. AD bisects BC: BD = DC
- 2. AD bisects $\angle A$: $\angle BAD = \angle CAD$
- 3. D is midpoint of BC

Angle Bisector in Isosceles Triangle

If AB = AC and AD bisects $\angle A$:

- AD ⊥ BC (perpendicular to base)
- BD = DC (bisects base)

Equal Altitudes

If two altitudes of a triangle are equal, then the triangle is isosceles

Formula: If BE = CF (altitudes), then AB = AC

PAGE 3: PROBLEM-SOLVING TECHNIQUES

Strategy 1: Identify Congruent Triangles

Steps:

- 1. Mark given equal sides/angles
- 2. Look for common sides/angles
- 3. Find vertically opposite angles
- 4. Check for alternate/corresponding angles (parallel lines)
- 5. Choose appropriate congruence rule

Strategy 2: Using Properties

For proving sides equal:

• Show triangles congruent → use CPCT

For proving angles equal:

- Show triangles congruent → use CPCT
- Use isosceles triangle property

For proving lines parallel:

• Show alternate angles equal

• Show corresponding angles equal

Common Triangle Configurations

Perpendicular Bisector

Point P on perpendicular bisector of AB:

- PA = PB (equidistant from endpoints)
- Use RHS congruence

Angle Bisector

Point P on angle bisector of $\angle A$, with PB \perp one arm, PC \perp other arm:

- **PB** = **PC** (equidistant from arms)
- Use AAS or ASA congruence

Median

Line from vertex to midpoint of opposite side

- Creates two triangles with equal bases
- Useful for proving congruence with additional conditions

Key Proof Patterns

Pattern 1: Show AB = CD

- 1. Identify triangles containing AB and CD
- 2. Prove those triangles congruent
- 3. Conclude AB = CD by CPCT

Pattern 2: Show $\angle A = \angle B$

- 1. Find triangles containing these angles
- 2. Prove triangles congruent
- 3. Conclude angles equal by CPCT

Pattern 3: Show Line Bisects Segment

- 1. Show two segments are equal
- 2. Use definition of midpoint/bisector

Pattern 4: Show Lines Perpendicular

- 1. Prove angles equal to 90°
- 2. Use linear pair or triangle properties

PAGE 4: QUICK REFERENCE & FORMULAS

Triangle Angle Sum

$$\angle A + \angle B + \angle C = 180^{\circ}$$

Special Triangles Summary

Triangle Type	Sides	Angles
Equilateral	All equal	Each 60°
Isosceles	Two equal	Two equal
Right-angled	-	One 90°
Scalene	All different	All different
▲	•	·

Congruence Rules Quick Check

Rule	Need	Don't Confuse With
SAS	2 sides + included angle	SSA (invalid)
ASA	2 angles + included side	SAA
AAS	2 angles + non-included side	-
SSS	All 3 sides	-
RHS	Right angle + hypotenuse + side	Only for right triangles
◀	'	>

When to Use Which Rule

Use SAS when:

- Two sides are given/proven equal
- Angle between them is equal
- Common side present

Use ASA when:

- Two angles are equal
- Common side between them
- Often with parallel lines (alternate angles)

Use AAS when:

- Two angles equal
- One side equal (not between angles)
- Third angle automatically equal

Use SSS when:

- All three sides can be shown equal
- Common side + two other equal sides

Use RHS when:

- Triangle is right-angled
- Hypotenuse given
- One other side given

Important Theorems Checklist

```
✓ Theorem 7.1 (ASA): Two angles + included side → congruent ✓ Theorem 7.2: Equal sides → equal opposite angles ✓ Theorem 7.3: Equal angles → equal opposite sides
✓ Theorem 7.4 (SSS): Three sides equal → congruent ✓ Theorem 7.5 (RHS): Right angle + hypotenuse + side → congruent
```

Common Proof Statements

Proving Congruence

"In \triangle ABC and \triangle PQR:

- [side/angle] = [side/angle] (Given/Proved/Common)
- [side/angle] = [side/angle] (reason)
- [side/angle] = [side/angle] (reason) Therefore, $\triangle ABC \cong \triangle PQR$ (by SAS/ASA/AAS/SSS/RHS) Hence, [required result] (by CPCT)"

Using Isosceles Property

"In \triangle ABC, AB = AC (given/proved)

Therefore, $\angle B = \angle C$ (angles opposite equal sides)"

Using Angle Bisector

"AD bisects ∠A (given)

Therefore, $\angle BAD = \angle CAD = \frac{1}{2} \angle A''$

Problem-Solving Checklist

Before starting any proof:

- Mark all given information on diagram
- Identify what needs to be proved
- Look for congruent triangles
- ☐ Check for common sides/angles
- ☐ Identify which congruence rule applies
- Write proof systematically
- State CPCT for final conclusion

Common Mistakes to Avoid

- ★ Using SSA/ASS rule (invalid)
- > Wrong vertex correspondence in congruence
- X Forgetting to state "common side"
- X Not mentioning which congruence rule used
- X Assuming angles equal without proof

- X Using RHS for non-right triangles
- X Not stating CPCT at the end
- ✓ Always check angle is included for SAS
- ✓ Verify all conditions before applying rule
- ✓ State reasons for each step
- ✓ Mark diagrams clearly
- ✓ Write correspondence correctly