Coordinate Geometry Formula Sheet

Basic Concepts and Definitions

Coordinate System (Cartesian System)

- Origin (O): Point where x-axis and y-axis intersect → (0, 0)
- x-axis: Horizontal line passing through origin
- y-axis: Vertical line passing through origin
- Coordinate Plane: Plane formed by x-axis and y-axis

Point Coordinates

- Any point P in the plane is represented as P(x, y)
- x-coordinate (Abscissa): Perpendicular distance from y-axis
- y-coordinate (Ordinate): Perpendicular distance from x-axis

Quadrants and Signs

Quadrant	Sign Pattern	Description
I (First)	(+, +)	Both coordinates positive
II (Second)	(-, +)	x negative, y positive
III (Third)	(-, -)	Both coordinates negative
IV (Fourth)	(+, -)	x positive, y negative
◀	'	>

Special Points

Points on Axes

- Point on x-axis: (x, 0) where y-coordinate = 0
- Point on y-axis: (0, y) where x-coordinate = 0
- Origin: (0, 0)

Important Properties

- Unique Representation: Each point has exactly one coordinate pair
- Order Matters: $(x, y) \neq (y, x)$ unless x = y
- Distance from Origin: Point (x, y) is at distance $\sqrt{(x^2 + y^2)}$ from origin

Coordinate Rules

Reading Coordinates

- 1. x-coordinate: Count units horizontally from y-axis
 - Positive: Right of y-axis
 - Negative: Left of y-axis
- 2. y-coordinate: Count units vertically from x-axis
 - Positive: Above x-axis
 - Negative: Below x-axis

Writing Coordinates

- Always write as (x-coordinate, y-coordinate)
- First value = horizontal position
- Second value = vertical position

Key Formulas (For Future Reference)

Distance Between Two Points

For points A(x₁, y₁) and B(x₂, y₂): Distance = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint of Line Segment

For points A(x_1 , y_1) and B(x_2 , y_2): Midpoint = (($x_1 + x_2$)/2, ($y_1 + y_2$)/2)

Area of Triangle

For triangle with vertices A(x_1 , y_1), B(x_2 , y_2), C(x_3 , y_3): Area = $\frac{1}{2}|x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|$

Quick Reference Chart

Quadrant Identification

- I: x > 0, y > 0 (Top-right)
- II: x < 0, y > 0 (Top-left)
- **III**: x < 0, y < 0 (Bottom-left)
- **IV**: x > 0, y < 0 (Bottom-right)

Axis Points

- **Positive x-axis**: (a, 0) where a > 0
- **Negative x-axis**: (-a, 0) where a > 0
- **Positive y-axis**: (0, b) where b > 0
- Negative y-axis: (0, -b) where b > 0

Memory Tips

1. "Right-Up" Rule: x increases going right, y increases going up

- 2. Alphabetical Order: x comes before y in coordinates (x, y)
- 3. Quadrant Counter: Number quadrants I, II, III, IV counter-clockwise from positive x-axis
- 4. Sign Pattern:
 - Quadrant I: Both positive (like northeast)
 - Quadrant II: x negative, y positive (like northwest)
 - Quadrant III: Both negative (like southwest)
 - Quadrant IV: x positive, y negative (like southeast)

Common Mistakes to Avoid

- X Confusing (x, y) with (y, x)
- X Wrong quadrant identification
- X Forgetting that axes points have one coordinate as zero
- X Incorrect sign assignment in different quadrants

Named after René Descartes (1596-1650), French mathematician and philosopher