Chapter 7: Redox Reactions

Comprehensive Study Notes

Class 11 Chemistry - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and JEE Examinations

Introduction

Redox reactions represent one of the most important categories of chemical transformations. These reactions are fundamental to numerous processes including:

Everyday Applications:

- Combustion of fuels for energy
- Battery operations (dry and wet cells)
- Metal corrosion processes
- Industrial manufacturing (caustic soda production)

Advanced Applications:

- Electrochemical metal extraction
- Pharmaceutical synthesis
- Environmental processes (Hydrogen Economy, Ozone depletion)
- Biological systems (respiration, photosynthesis)

Key Principle: In redox reactions, oxidation and reduction occur simultaneously - "Where there is oxidation, there is always reduction."

7.1 CLASSICAL IDEA OF REDOX REACTIONS

Historical Evolution of Oxidation Concept

Stage 1: Oxygen-Based Definition

Original Definition: Oxidation = Addition of oxygen to an element/compound

Examples:

- $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$ (Mg oxidized)
- $S(s) + O_2(g) \rightarrow SO_2(g)$ (S oxidized)
- $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ (CH₄ oxidized)

Stage 2: Hydrogen-Based Extension

Expanded Definition: Oxidation = Removal of hydrogen from a compound

Example:

• $2H_2S(g) + O_2(g) \rightarrow 2S(s) + 2H_2O(l)$ (H_2S oxidized by H removal)

Stage 3: Electronegativity-Based Generalization

Modern Classical Definition:

- Oxidation: Addition of electronegative element OR removal of electropositive element
- **Reduction:** Addition of electropositive element OR removal of electronegative element

Examples:

- $Mg(s) + F_2(g) \rightarrow MgF_2(s)$ (Mg oxidized F added)
- $Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$ (Mg oxidized Cl added)
- $2K_4[Fe(CN)_6] + H_2O_2 \rightarrow 2K_3[Fe(CN)_6] + 2KOH$ (K removal = oxidation)

Classical Reduction Examples

- $2HgO(s) \rightarrow 2Hg(l) + O_2(g)$ (O removal)
- $2FeCl_3(aq) + H_2(g) \rightarrow 2FeCl_2(aq) + 2HCl(aq)$ (Cl removal)
- $CH_2=CH_2(g) + H_2(g) \rightarrow H_3C-CH_3(g)$ (H addition)

Key Insight: Oxidation and reduction always occur simultaneously, leading to the term "redox."

7.2 REDOX REACTIONS IN TERMS OF ELECTRON TRANSFER

Electronic Theory Foundation

Modern Definition:

- Oxidation: Loss of electrons by a species
- **Reduction:** Gain of electrons by a species
- Oxidizing agent (Oxidant): Electron acceptor
- Reducing agent (Reductant): Electron donor

Half-Reaction Approach

Example: Formation of NaCl

- Overall: 2Na(s) + Cl₂(q) → 2NaCl(s)
- Oxidation half: 2Na(s) → 2Na⁺(q) + 2e⁻
- **Reduction half:** Cl₂(g) + 2e⁻ → 2Cl⁻(g)

7.2.1 Competitive Electron Transfer Reactions

Metal Activity Series

Experimental Observations:

1. $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$ (Spontaneous)

2. Cu + Zn²+ → No reaction (Non-spontaneous)

Activity Order: Zn > Cu > Ag (decreasing electron-releasing tendency)

Galvanic Cell Formation:

- Chemical energy → Electrical energy
- Basis for electrochemical series
- Foundation for battery technology

7.3 OXIDATION NUMBER

Definition and Purpose

Oxidation Number: A hypothetical charge assigned to an atom in a compound, assuming complete electron transfer to the more electronegative atom.

Purpose:

- Track electron movement in covalent compounds
- Systematic approach to identify redox changes
- Balancing complex redox equations

Rules for Assigning Oxidation Numbers

Fundamental Rules:

- 1. Free elements: Oxidation number = 0
 - Examples: H₂, O₂, Cl₂, P₄, S₈, Na, Mg

2. **Monatomic ions:** Oxidation number = Ionic charge

•
$$Na^+ = +1$$
, $Mg^{2+} = +2$, $Cl^- = -1$, $O^{2-} = -2$

3. Group trends:

- **Group 1:** Always +1 in compounds
- **Group 2:** Always +2 in compounds
- **Aluminum:** Always +3 in compounds

4. Oxygen rules:

- Most compounds: -2
- Peroxides (H₂O₂, Na₂O₂): -1
- Superoxides (KO₂, RbO₂): -1/2
- With fluorine (OF₂, O₂F₂): +2, +1 respectively

5. **Hydrogen rules:**

- Most compounds: +1
- Metal hydrides (LiH, NaH, CaH₂): -1

6. Halogen rules:

- Fluorine: Always -1
- Other halogens: Usually -1, positive in oxoacids/oxoanions

7. Electroneutrality:

- **Neutral compounds:** Sum of oxidation numbers = 0
- **Polyatomic ions:** Sum = Ionic charge

Oxidation Number Applications

Identifying Redox Changes:

• Oxidation: Increase in oxidation number

- **Reduction:** Decrease in oxidation number
- Oxidizing agent: Species undergoing reduction
- Reducing agent: Species undergoing oxidation

Stock Notation:

Roman numerals in parentheses indicate oxidation states:

- AuCl → Au(l)Cl
- $AuCl_3 \rightarrow Au(III)Cl_3$
- $SnCl_2 \rightarrow Sn(II)Cl_2$
- SnCl₄ → Sn(IV)Cl₄

7.3.1 TYPES OF REDOX REACTIONS

1. Combination Reactions

Pattern: $A + B \rightarrow C$ (where A or B or both are elements)

Examples:

- $C(s) + O_2(g) \rightarrow CO_2(g)$ (C: $0 \rightarrow +4$)
- $3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$ (Mg: $0 \rightarrow +2$, N: $0 \rightarrow -3$)
- $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ (C: -4 \rightarrow +4)

2. Decomposition Reactions

Pattern: Compound → Elements + Other compounds

Examples:

•
$$2H_2O(1) \rightarrow 2H_2(g) + O_2(g)$$
 (H: +1 \rightarrow 0, O: -2 \rightarrow 0)

•
$$2NaH(s) \rightarrow 2Na(s) + H_2(q) (Na: +1 \rightarrow 0, H: -1 \rightarrow 0)$$

•
$$2KCIO_3(s) \rightarrow 2KCI(s) + 3O_2(g)$$
 (Cl: +5 \rightarrow -1, O: -2 \rightarrow 0)

Note: Not all decomposition reactions are redox reactions.

CaCO₃(s) → CaO(s) + CO₂(g) (Not redox - no oxidation state changes)

3. Displacement Reactions

Metal Displacement:

Pattern: More active metal displaces less active metal from compound

Examples:

•
$$CuSO_4(aq) + Zn(s) \rightarrow Cu(s) + ZnSO_4(aq)$$

•
$$V_2O_5(s) + 5Ca(s) \rightarrow 2V(s) + 5CaO(s)$$

•
$$TiCl_4(I) + 2Mg(s) \rightarrow Ti(s) + 2MgCl_2(s)$$

Hydrogen Displacement:

From water:

•
$$2Na(s) + 2H_2O(l) \rightarrow 2NaOH(aq) + H_2(q)$$

•
$$Ca(s) + 2H_2O(l) \rightarrow Ca(OH)_2(aq) + H_2(g)$$

From steam:

•
$$Mg(s) + 2H_2O(g) \rightarrow Mg(OH)_2(s) + H_2(g)$$

•
$$2Fe(s) + 3H_2O(q) \rightarrow Fe_2O_3(s) + 3H_2(q)$$

From acids:

•
$$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$$

•
$$Fe(s) + 2HCl(aq) \rightarrow FeCl_2(aq) + H_2(g)$$

Non-metal Displacement:

Halogen activity series: $F_2 > Cl_2 > Br_2 > l_2$

Examples:

•
$$Cl_2(g) + 2KBr(aq) \rightarrow 2KCl(aq) + Br_2(l)$$

•
$$Cl_2(g) + 2KI(aq) \rightarrow 2KCI(aq) + I_2(s)$$

•
$$Br_2(I) + 2I^-(aq) \rightarrow 2Br^-(aq) + I_2(s)$$

Industrial Application: Layer Test for halide identification

4. Disproportionation Reactions

Definition: Same element simultaneously oxidized and reduced

Requirements:

- Element in intermediate oxidation state
- Can exist in at least 3 different oxidation states
- Products have higher and lower oxidation states

Examples:

•
$$2H_2O_2(aq) \rightarrow 2H_2O(1) + O_2(g) (O: -1 \rightarrow -2, 0)$$

•
$$3Cl_2(g) + 6OH^-(aq) \rightarrow 5Cl^-(aq) + ClO_3^-(aq) + 3H_2O(l)$$
 (Cl: $0 \rightarrow -1$, +5)

$$\bullet \quad P_4(s) \, + \, 3OH^-(aq) \, + \, 3H_2O(l) \, \rightarrow \, PH_3(g) \, + \, 3H_2PO_2^-(aq) \, \textit{(P: 0 \rightarrow -3, +1)}$$

Exception: Fluorine cannot disproportionate (most electronegative, no positive oxidation state)

7.3.2 BALANCING REDOX REACTIONS

Method 1: Oxidation Number Method

Steps:

- 1. Write correct formulas for all reactants and products
- 2. **Assign oxidation numbers** to identify changing elements
- 3. Calculate electron change and equalize gain/loss
- 4. **Balance ionic charges** (add H⁺ in acidic, OH⁻ in basic medium)
- 5. **Balance atoms** by adding H₂O molecules
- 6. Verify balance (atoms and charges)

Example:
$$Cr_2O_7^{2-} + SO_3^{2-} \rightarrow Cr^{3+} + SO_4^{2-}$$
 (acidic)

Step-by-step:

1.
$$Cr_2O_7^{2-}(aq) + SO_3^{2-}(aq) \rightarrow Cr^{3+}(aq) + SO_4^{2-}(aq)$$

2. Cr:
$$+6 \rightarrow +3$$
 (decrease of 3, \times 2 = $6e^{-}$ gained) S: $+4 \rightarrow +6$ (increase of 2, \times 3 = $6e^{-}$ lost)

3.
$$Cr_2O_7^{2-} + 3SO_3^{2-} \rightarrow 2Cr^{3+} + 3SO_4^{2-}$$

4. Add
$$8H^+$$
: $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-}$

5. Add
$$4H_2O$$
: $Cr_2O_7^{2-} + 3SO_3^{2-} + 8H^+ \rightarrow 2Cr^{3+} + 3SO_4^{2-} + 4H_2O$

Method 2: Half-Reaction Method

Steps:

- 1. Write unbalanced ionic equation
- 2. Separate into half-reactions

- 3. **Balance atoms** (other than O and H)
- 4. Add H₂O to balance O atoms
- 5. **Add H**⁺ to balance H atoms (acidic medium)
- 6. **Add electrons** to balance charges
- 7. **Equalize electrons** in both half-reactions
- 8. Add half-reactions and simplify
- 9. For basic medium: Add OH⁻ to neutralize H⁺

Example: $MnO_4^- + I^- \rightarrow MnO_2 + I_2$ (basic)

Oxidation half: $2I^- \rightarrow I_2 + 2e^-$ Reduction half: $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$

For basic medium: Add $4OH^-$ to both sides of reduction half: $MnO_4^- + 4H_2O + 3e^- \rightarrow MnO_2 + 4H_2O + 3e^-$

40H⁻

Balanced equation: $6l^- + 2MnO_4^- + 4H_2O \rightarrow 3I_2 + 2MnO_2 + 8OH^-$

7.3.3 REDOX TITRATIONS

Self-Indicator Systems

Example: Permanganate Titrations

- MnO₄⁻ (purple) → Mn²⁺ (colorless)
- End point: First permanent pink color
- Sensitivity: 10⁻⁶ mol/L detection limit

External Indicator Systems

Example: Dichromate Titrations

- Uses diphenylamine indicator
- Color change: Colorless → Intense blue
- Indicates complete oxidation of analyte

lodometric Methods

Principle: Indirect determination using I₂/I⁻ couple

Steps:

1. Liberation: $Cu^{2+} + 4l^- \rightarrow Cu_2l_2 + l_2$

2. **Detection:** I_2 + starch \rightarrow Blue complex

3. **Titration:** $I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}$

4. **End point:** Blue color disappears

7.4 REDOX REACTIONS AND ELECTRODE PROCESSES

Electrochemical Cells

Redox Couples

Definition: Oxidized and reduced forms of same species **Notation:** Oxidized form/Reduced form

Examples: Cu²⁺/Cu, Zn²⁺/Zn, Fe³⁺/Fe²⁺

Daniell Cell

Construction:

• **Anode:** Zn|Zn²⁺ (oxidation occurs)

• **Cathode:** Cu²⁺|Cu (reduction occurs)

• Salt bridge: Maintains electrical neutrality

• **External circuit:** Electron flow (Zn → Cu)

Cell Reactions:

• Anode: $Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$

• **Cathode:** Cu²⁺(aq) + 2e⁻ → Cu(s)

• Overall: $Zn(s) + Cu^{2+}(aq) \rightarrow Zn^{2+}(aq) + Cu(s)$

Standard Electrode Potentials

Definition and Convention

• Standard conditions: 298K, 1 atm, 1M concentration

• Reference: Standard Hydrogen Electrode (SHE) = 0.00 V

• Sign convention:

• Negative E° = Stronger reducing agent than H⁺/H₂

• Positive E° = Weaker reducing agent than H⁺/H₂

Electrochemical Series (Selected Values)

Half-Reaction	E° (V)
Li ⁺ + e ⁻ → Li	-3.05
$K^+ + e^- \rightarrow K$	-2.93
$Na^+ + e^- \rightarrow Na$	-2.71
$Mg^{2+} + 2e^- \rightarrow Mg$	-2.36
$AI^{3+} + 3e^- \rightarrow AI$	-1.66
Zn ²⁺ + 2e ⁻ → Zn	-0.76
Fe ²⁺ + 2e ⁻ → Fe	-0.44
$2H^{+} + 2e^{-} \rightarrow H_{2}$	0.00
Cu ²⁺ + 2e ⁻ → Cu	+0.34
$I_2 + 2e^- \rightarrow 2I^-$	+0.54
$Ag^+ + e^- \rightarrow Ag$	+0.80
$Br_2 + 2e^- \rightarrow 2Br^-$	+1.09
$Cl_2 + 2e^- \rightarrow 2Cl^-$	+1.36
$MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$	+1.51
$F_2 + 2e^- \rightarrow 2F^-$	+2.87
◀	>

Applications:

- Predicting spontaneous reactions
- Designing galvanic cells
- Understanding corrosion
- Metal extraction processes

NEET/JEE Important Points

High-Yield Topics:

1. Oxidation Number Rules:

- Exception cases (peroxides, superoxides, metal hydrides)
- Stock notation for transition metals
- Fractional oxidation numbers (average states)

2. Balancing Equations:

- Both algebraic and half-reaction methods
- Acidic vs basic medium differences
- Common redox couples

3. Types of Reactions:

- Identification from equations
- Disproportionation conditions
- Industrial applications

4. Electrochemical Series:

- Predicting reaction feasibility
- Metal displacement reactions
- Relative reducing/oxidizing power

Common Exam Patterns:

1. Numerical Problems:

- Oxidation number calculations
- Equivalent weight determinations
- Titration calculations

2. Mechanism Questions:

- Electron transfer pathways
- Half-reaction writing
- Cell representations

3. Application Problems:

- Industrial processes
- Biological systems
- Environmental chemistry

Memory Aids and Mnemonics

Oxidation Number Rules:

"Free Elements Get Zero, Ions Get Their Charge"

- Free elements = 0
- Monatomic ions = charge

Redox Definitions:

"OIL RIG LEO GER"

• Oxidation Is Loss (of electrons)

- Reduction Is Gain (of electrons)
- Loss of Electrons Oxidation
- Gain of Electrons Reduction

Electrochemical Series:

"Please Stop Calling Me A Careless Zebra Instead Try Learning How Copper Shows Bravery In Acidic Conditions For Gold"

• Pb, Sn, Cd, Mg, Al, Cr, Zn, Iron, Tin, Lead, H₂, Cu, Silver, Bromine, Iodine, Au, Cl₂, F₂, Gold

Balancing Steps:

"Write Assign Calculate Balance Verify"

- Write skeleton equation
- Assign oxidation numbers
- Calculate electron changes
- **B**alance charges and atoms
- **V**erify final equation

Practice Questions for NEET/JEE

Multiple Choice Questions:

- 1. In the reaction: $2\text{FeCl}_3 + \text{H}_2\text{S} \rightarrow 2\text{FeCl}_2 + 2\text{HCl} + \text{S}$, which species is oxidized? a) Fe^{3+} b) Cl^- c) H_2S d) S
- 2. The oxidation number of Cr in $K_2Cr_2O_7$ is: a) +3 b) +6 c) +7 d) +2
- 3. Which of the following is a disproportionation reaction? a) $2H_2O_2 \rightarrow 2H_2O + O_2$ b) $Zn + CuSO_4 \rightarrow ZnSO_4 + Cu$ c) $2KI + Cl_2 \rightarrow 2KCI + I_2$ d) $CaCO_3 \rightarrow CaO + CO_2$

Assertion-Reason Questions:

Assertion (A): In the reaction $Cl_2 + 2KI \rightarrow 2KCI + I_2$, Cl_2 is reduced. **Reason (R):** The oxidation number of CI decreases from 0 to -1.

Short Answer Questions:

- 1. Balance the equation: $MnO_4^- + C_2O_4^{2-} \rightarrow Mn^{2+} + CO_2$ (acidic medium)
- 2. Calculate the oxidation number of S in Na₂S₄O₆.
- 3. Identify the oxidizing and reducing agents in: $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$

Long Answer Questions:

- 1. Explain the electronic concept of redox reactions with examples.
- 2. Derive the relationship between oxidation number change and electrons transferred.
- 3. Describe the construction and working of Daniell cell.

Summary Table: Key Comparisons

Classical vs Electronic Concepts:

Aspect	Classical	Electronic
Oxidation	Addition of O ₂ /electronegative element	Loss of electrons
Reduction	Addition of H ₂ /electropositive element	Gain of electrons
Scope	Limited to specific elements	Universal applicability
Mechanism	Atom/ion transfer	Electron transfer
▲	'	>

Balancing Methods Comparison:

Method	Best For	Limitations
Oxidation Number	Simple reactions, beginners	Complex polyatomic ions
Half-Reaction	Complex reactions, electrochemistry	Requires ion knowledge
▲		>

Types of Redox Reactions:

Туре	Characteristics	Examples
Combination	$A + B \rightarrow C$	Metal + non-metal
Decomposition	$AB \rightarrow A + B$	Electrolysis reactions
Displacement	$A + BC \rightarrow AC + B$	Metal activity series
Disproportionation	Same element oxidized and reduced	ClO ⁻ → Cl ⁻ + ClO ₃ ⁻
◀	'	>

EXAM SPRINT - Master Redox Reactions through systematic study of electron transfer concepts, oxidation number rules, balancing techniques, and electrochemical applications. Regular practice of numerical problems and mechanism questions is essential for NEET/JEE success.

Source: NCERT Chemistry Class 11, Chapter 7 - Comprehensive coverage for competitive exam preparation