Chapter 3: Plant Kingdom

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

The Plant Kingdom represents one of the five major kingdoms in Whittaker's classification system. Modern understanding has evolved significantly, excluding fungi, bacteria, and many algae that were previously considered plants.

Current Plant Kingdom Includes:

- **Algae** (chlorophyll-bearing, simple organisms)
- **Bryophytes** (mosses and liverworts)
- Pteridophytes (ferns and their allies)
- **Gymnosperms** (naked seed plants)
- **Angiosperms** (flowering plants)

Evolution of Classification Systems:

Artificial Systems:

- Based on superficial morphological characters
- Linnaeus system used vegetative and androecium features
- Separated closely related species

• Equal weightage to vegetative and sexual characteristics

Natural Classification:

- Based on natural affinities
- Considered internal features: anatomy, embryology, phytochemistry
- Example: Bentham and Hooker system

Phylogenetic Classification:

- Based on evolutionary relationships
- Modern approach using multiple data sources
- Numerical taxonomy using computer analysis
- Cytotaxonomy (chromosome studies)
- Chemotaxonomy (chemical constituents)

3.1 ALGAE

General Characteristics

- **Chlorophyll-bearing** simple, thalloid organisms
- Autotrophic nutrition through photosynthesis
- Aquatic habitat (freshwater and marine) primarily
- Variable forms: unicellular, colonial, filamentous
- **Size range**: microscopic to massive kelps (100+ meters)

Habitats:

• Aquatic environments (primary)

- Moist stones, soils, wood
- Symbiotic associations (lichens, animals)

Reproduction in Algae

1. Vegetative Reproduction:

- Fragmentation of thallus
- Each fragment develops into new plant

2. Asexual Reproduction:

- **Zoospores**: flagellated, motile spores
- Most common asexual method
- Germinate to form new plants

3. Sexual Reproduction:

- **Isogamous**: Similar sized gametes (Ulothrix, Spirogyra)
- **Anisogamous**: Different sized gametes (Eudorina)
- **Oogamous**: Large non-motile egg + small motile sperm (Volvox, Fucus)

Economic Importance of Algae

Ecological Significance:

- 50% of global CO₂ fixation through photosynthesis
- **Primary producers** in aquatic food chains
- Oxygen production in aquatic environments

Commercial Uses:

- Food: Porphyra, Laminaria, Sargassum (70+ edible species)
- **Hydrocolloids**: Algin (brown algae), Carrageen (red algae)
- Agar: From Gelidium and Gracilaria
- **Protein supplement**: Chlorella for space travelers

Classification of Algae

3.1.1 Chlorophyceae (Green Algae)

Characteristics:

- **Pigments**: Chlorophyll a and b (grass green color)
- **Chloroplasts**: Various shapes discoid, cup-shaped, spiral, ribbon
- **Storage**: Starch in pyrenoids
- **Cell wall**: Inner cellulose + outer pectose layer

Reproduction:

- **Vegetative**: Fragmentation
- **Asexual**: Flagellated zoospores
- **Sexual**: Isogamous, anisogamous, or oogamous

Important Examples:

- Chlamydomonas: Unicellular, flagellated
- Volvox: Colonial, spherical
- **Ulothrix**: Filamentous
- **Spirogyra**: Filamentous with spiral chloroplasts
- Chara: Complex structure

3.1.2 Phaeophyceae (Brown Algae)

Characteristics:

• Habitat: Primarily marine

• **Size range**: Simple filamentous to 100m kelps

• **Pigments**: Chlorophyll a, c + carotenoids + fucoxanthin

• **Color**: Olive green to brown (due to fucoxanthin)

• **Storage**: Laminarin or mannitol

• **Cell wall**: Cellulose + outer algin coating

Structure:

• Holdfast: Attachment to substrate

• **Stipe**: Stalk-like structure

• Frond: Leaf-like photosynthetic organ

Reproduction:

• Vegetative: Fragmentation

• **Asexual**: Biflagellate zoospores (pear-shaped)

• **Sexual**: Isogamous, anisogamous, or oogamous

Important Examples:

• **Ectocarpus**: Simple branched filaments

• Laminaria: Large kelp

• Sargassum: Floating seaweed

• Fucus: Rock weed

• **Dictyota**: Dichotomously branched

3.1.3 Rhodophyceae (Red Algae)

Characteristics:

• **Pigment**: r-phycoerythrin (predominant red pigment)

• **Habitat**: Marine (especially warmer waters)

• **Depth range**: Surface to deep ocean waters

• **Body**: Multicellular red thalli

• **Storage**: Floridean starch (similar to glycogen)

Reproduction:

• **Vegetative**: Fragmentation

• **Asexual**: Non-motile spores

• **Sexual**: Oogamous with complex post-fertilization development

Important Examples:

• **Polysiphonia**: Filamentous

• **Porphyra**: Sheet-like, edible

• **Gracilaria**: Source of agar

• **Gelidium**: Commercial agar source

Comparative Table of Algal Classes:

Feature Chlorophyceae		Phaeophyceae	Rhodophyceae	
Common Name	Green algae	Brown algae	Red algae	
Major Pigments	Chl a, b Chl a, c, fucoxant		Chl a, d, phycoerythrin	

Feature	Chlorophyceae	Phaeophyceae	Rhodophyceae
Storage	Starch	Mannitol, laminarin	Floridean starch
Cell Wall	Cellulose	Cellulose + algin	Cellulose, pectin
Flagella	2-8, equal, apical	2, unequal, lateral	Absent
Habitat	Fresh/brackish/marine	Mainly marine	Marine (mostly)
▲	•	I	>

3.2 BRYOPHYTES

General Characteristics

- "Amphibians of plant kingdom" live on land but need water for reproduction
- Habitat: Moist, shaded areas
- **Plant body**: More differentiated than algae
- **Structure**: Thallus-like, prostrate or erect
- Attachment: Unicellular or multicellular rhizoids
- **True organs**: Absent (root-like, stem-like, leaf-like structures present)

Life Cycle Characteristics:

- Dominant phase: Haploid gametophyte
- **Gametophyte**: Main plant body, produces gametes
- **Sporophyte**: Dependent on gametophyte, produces spores

Sexual Reproduction:

- Male organ: Antheridium (produces biflagellate antherozoids)
- Female organ: Archegonium (flask-shaped, produces single egg)

- Fertilization: Water required for sperm movement
- **Zygote development**: Forms dependent sporophyte

Ecological Importance:

- **Pioneer species**: First to colonize bare rocks
- **Soil formation**: Rock weathering and decomposition
- Soil erosion prevention: Dense mat formation
- Succession: Prepare substrate for higher plants

Economic Uses:

- **Food**: Some mosses for animals
- **Fuel**: Sphagnum peat
- Packing material: Sphagnum for living specimens
- **Ecological indicators**: Environmental quality assessment

3.2.1 Liverworts

Characteristics:

- **Habitat**: Moist, shady places (stream banks, marshy ground)
- **Body structure**: Thalloid (e.g., Marchantia)
- **Orientation**: Dorsiventral, closely appressed to substrate
- **Leafy forms**: Two rows of leaf-like appendages

Reproduction:

Asexual:

• Fragmentation: Breaking of thalli

• **Gemmae**: Multicellular asexual buds in gemma cups

Sexual:

- Sex organs on same or different thalli
- Sporophyte: Foot, seta, capsule
- Spores produced after meiosis

Important Example:

• Marchantia: Classic liverwort with distinct male and female plants

3.2.2 Mosses

Life Cycle Stages:

1. Protonema Stage:

- Develops from spore
- Creeping, green, branched, filamentous
- Primary stage of gametophyte

2. Leafy Stage:

- Develops from protonema as lateral bud
- Upright stems with spirally arranged leaves
- Multicellular, branched rhizoids
- Bears sex organs

Reproduction:

• **Vegetative**: Fragmentation and budding in protonema

• **Sexual**: Antheridia and archegonia at apex of shoots

• **Sporophyte**: More elaborate than liverworts (foot, seta, capsule)

• **Spore dispersal**: Elaborate mechanisms

Important Examples:

• Funaria: Common moss

• **Sphagnum**: Peat moss

• **Polytrichum**: Hairy cap moss

3.3 PTERIDOPHYTES

General Characteristics

• Common name: Ferns and horsetails

• Evolutionary significance: First vascular land plants

• Vascular tissues: Well-developed xylem and phloem

• Habitat: Cool, damp, shady places (some in sandy soils)

• Uses: Medicinal, ornamental, soil binding

Plant Body:

• **Dominant phase**: Sporophyte (differentiated into root, stem, leaves)

• Leaves: Microphylls (Selaginella) or Macrophylls (ferns)

• **Sporangia**: Borne on sporophylls

• Strobili/Cones: Compact sporophyll arrangements (some species)

Life Cycle:

- Sporophyte: Dominant, vascular, independent
- **Spores**: Produced by meiosis in sporangia
- **Gametophyte**: Small, independent, photosynthetic (prothallus)
- Fertilization: Water required for sperm movement

Spore Types:

Homosporous:

- All spores similar
- Majority of pteridophytes
- Single type of gametophyte

Heterosporous:

- Two spore types: microspores and megaspores
- Examples: Selaginella, Salvinia
- Separate male and female gametophytes
- Evolutionary step toward seed habit

Classification:

- **Psilopsida**: Psilotum
- **Lycopsida**: Selaginella, Lycopodium
- **Sphenopsida**: Equisetum (horsetails)
- **Pteropsida**: True ferns (Dryopteris, Pteris, Adiantum)

Economic Importance:

• Medicinal uses: Traditional medicine

• **Ornamental**: Decorative plants

• **Soil binding**: Erosion control

• Coal formation: Ancient pteridophytes formed coal deposits

3.4 GYMNOSPERMS

Definition and Characteristics

• Name meaning: Gymnos (naked) + sperma (seeds)

• **Key feature**: Ovules and seeds not enclosed by ovary wall

• **Plant types**: Medium to tall trees and shrubs

• Root system: Tap roots, some with mycorrhiza

• **Special roots**: Coralloid roots in Cycas (N₂-fixing bacteria)

Adaptations:

• Needle-like leaves: Reduced surface area (conifers)

• Thick cuticle: Water conservation

• Sunken stomata: Reduce water loss

• Extreme tolerance: Temperature, humidity, wind extremes

Reproduction:

Heterosporous:

• **Microspores**: Develop into male gametophytes (pollen grains)

• **Megaspores**: Develop into female gametophytes

Strobili/Cones:

• Male strobili: Microsporophylls with microsporangia

• Female strobili: Megasporophylls with ovules

• **Arrangement**: May be on same tree (monoecious) or different trees (dioecious)

Life Cycle Features:

• Reduced gametophytes: No independent existence

• Pollen transfer: Wind pollination

• Fertilization: Pollen tube grows to archegonia

• **Seed formation**: Naked seeds (not enclosed in fruit)

Important Examples:

• **Cycas**: Unbranched stem, pinnate leaves

• **Pinus**: Branched, needle leaves

• **Ginkgo**: Deciduous, fan-shaped leaves

• Cedrus: Coniferous tree

• **Sequoia**: Giant redwood (tallest trees)

Economic Importance:

• **Timber**: Construction, paper industry

• **Resin**: Turpentine, rosin

• **Food**: Pine nuts, Cycas starch

• Ornamental: Landscaping

• Paper industry: Major source of pulp

3.5 ANGIOSPERMS

General Characteristics

• **Defining feature**: Seeds enclosed in fruits

• Reproductive structures: Specialized flowers

• **Diversity**: Largest plant group

• **Size range**: Wolffia (smallest) to Eucalyptus (100+ meters)

• **Habitats**: All types of environments

Economic Importance:

• Food crops: Cereals, fruits, vegetables

• Fodder: Animal feed

• **Fuel**: Wood, biofuels

• **Medicine**: Pharmaceuticals

• Industrial products: Fibers, oils, chemicals

Major Classifications:

- Dicotyledons (Dicots)
- Monocotyledons (Monocots)

NEET-Specific Important Points

High-Yield Topics for NEET:

1. Algae:

- Classification basis (pigments, storage)
- Economic importance
- Reproduction types
- Examples of each class

2. Bryophytes:

- Alternation of generations
- Gametophyte dominance
- Water requirement for reproduction
- Examples and their features

3. Pteridophytes:

- First vascular plants
- Homosporous vs heterosporous
- Classification into four groups
- Economic importance

4. Gymnosperms:

- Naked seeds concept
- Heterosporous reproduction
- Wind pollination

• Examples and adaptations

Common NEET Question Patterns:

1. Identification Questions:

- Recognize plants from descriptions
- Match examples with groups
- Identify reproductive structures

2. Comparison Questions:

- Compare life cycles
- Differentiate between groups
- Contrast reproduction methods

3. Economic Importance:

- Uses of different plant groups
- Commercial applications
- Ecological roles

Memory Aids and Mnemonics

Plant Kingdom Groups:

"All Boys Play Good Always"

- Algae
- **B**ryophytes
- **P**teridophytes

- **G**ymnosperms
- **A**ngiosperms

Algal Classes:

"Can People Realize"

- **C**hlorophyceae (Green)
- **P**haeophyceae (Brown)
- **R**hodophyceae (Red)

Bryophyte Groups:

"Live Mostly"

- **L**iverworts
- Mosses

Pteridophyte Classes:

"Please Let Students Pass"

- **P**silopsida
- Lycopsida
- **S**phenopsida
- **P**teropsida

Practice Questions for NEET

Multiple Choice Questions:

- 1. Which of the following is NOT a characteristic of algae? a) Chlorophyll-bearing b) Autotrophic c) Vascular tissues present d) Aquatic habitat
- 2. The dominant phase in bryophytes is: a) Sporophyte b) Gametophyte c) Zygote d) Spore
- 3. Heterospory is found in: a) All pteridophytes b) Selaginella and Salvinia c) All bryophytes d) All algae

Short Answer Questions:

- 1. Define heterospory and give two examples.
- 2. Why are bryophytes called amphibians of plant kingdom?
- 3. What is the economic importance of algae?

Long Answer Questions:

- 1. Describe the life cycle of a moss.
- 2. Compare the characteristics of three classes of algae.
- 3. Explain the evolutionary significance of pteridophytes.

Summary Table: Plant Kingdom Overview

Group	Dominant Phase	Vascular Tissue	Water for Fertilization	Seed Formation
Algae	Varies	Absent	Yes	No
Bryophytes	Gametophyte	Absent	Yes	No
Pteridophytes	Sporophyte	Present	Yes	No
Gymnosperms	Sporophyte	Present	No	Yes (naked)

Group	Dominant Phase	Vascular Tissue	Water for Fertilization	Seed Formation
Angiosperms	Sporophyte	Present	No	Yes (enclosed)
◀	'	')

Evolutionary Trends in Plant Kingdom

Progressive Evolution:

- **1. Thalloid** → **Differentiated body**
- 2. No vascular tissue → Vascular tissue
- 3. Gametophyte dominant → Sporophyte dominant
- 4. Water-dependent → Water-independent reproduction
- 5. No seeds → Naked seeds → Enclosed seeds

EXAM SPRINT - Master the Plant Kingdom with focused study on classification, life cycles, economic importance, and evolutionary trends. Regular practice of identification and comparison questions is key to NEET success.

Source: NCERT Biology Class 11, Chapter 3 - Comprehensive coverage for NEET preparation