Chapter 13: Plant Growth and Development

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

Development is the sum of growth and differentiation. Plant development follows a precise and ordered succession of events from zygote to mature plant, producing complex body organization with roots, leaves, branches, flowers, fruits, and seeds.

Key Questions Addressed:

- How do plant structures arise in orderly sequence?
- Why does vegetative phase precede flowering?
- How do cells from the same zygote develop different functions?
- What factors control developmental processes?

Developmental Process Overview:

Seed Germination → **Growth** → **Differentiation** → **Maturation** → **Senescence** → **Death**

13.1 GROWTH

Definition:

Growth is an **irreversible permanent increase in size** of an organ, its parts, or individual cells, accompanied by metabolic processes requiring energy.

Examples:

• **Growth**: Leaf expansion

• Non-growth: Wood swelling in water (reversible)

13.1.1 Plant Growth Generally is Indeterminate

Unique Features of Plant Growth:

• **Unlimited Growth Capacity**: Throughout life due to meristems

• Open Form of Growth: New cells continuously added by meristematic activity

• **Self-perpetuating Meristems**: Divide and maintain growth capacity

Types of Growth:

Primary Growth:

• **Location**: Root and shoot apical meristems

• **Result**: Elongation along plant axis

• **Duration**: Throughout plant life

Secondary Growth:

• Location: Lateral meristems (vascular cambium, cork cambium)

• **Result**: Increase in girth/thickness

• **Plants**: Dicotyledons and gymnosperms

• **Timing**: Appears later in plant life

13.1.2 Growth is Measurable

Measurement Parameters:

- Fresh weight and dry weight
- Length, area, and volume
- Cell number

Examples of Growth Measurements:

- **Maize root**: 17,500 new cells per hour (growth by cell division)
- Watermelon cells: 3,50,000 times size increase (growth by cell enlargement)
- Pollen tube: Measured by length
- **Dorsiventral leaf**: Measured by surface area increase

13.1.3 Phases of Growth

Growth occurs in three distinct phases:

1. Meristematic Phase:

Location: Root and shoot apex **Characteristics**:

- Constantly dividing cells
- Rich in protoplasm
- Large, conspicuous nuclei
- Primary cell walls (thin, cellulosic)
- Abundant plasmodesmatal connections

2. Elongation Phase:

Location: Proximal to meristematic zone **Characteristics**:

- Increased vacuolation
- Cell enlargement

• New cell wall deposition

3. Maturation Phase:

Location: Most proximal to apex **Characteristics**:

- Cells attain maximal size
- Wall thickening
- Protoplasmic modifications
- Specialized cell types and tissues formed

13.1.4 Growth Rates

Growth Rate: Increased growth per unit time

Types of Growth Patterns:

1. Arithmetic Growth:

Mechanism: Only one daughter cell divides after mitosis, other differentiates **Pattern**: Linear growth curve **Example**: Root elongating at constant rate **Mathematical Expression**:

Lt = L0 + rt

Where:

Lt = length at time 't'

L0 = initial length

r = growth rate per unit time

2. Geometric Growth:

Mechanism: Both daughter cells retain division capacity **Pattern**: Sigmoid (S-curve) with three phases:

Phases:

- 1. Lag Phase: Slow initial growth
- 2. Log/Exponential Phase: Rapid exponential growth
- 3. **Stationary Phase**: Growth slows due to limited nutrients

Mathematical Expression:

```
W1 = W0 × e^(rt)

Where:
W1 = final size
W0 = initial size
r = relative growth rate (efficiency index)
t = time
e = base of natural logarithms
```

Growth Rate Comparisons:

Absolute Growth Rate: Total growth per unit time **Relative Growth Rate**: Growth per unit time on common basis (per unit initial parameter)

13.1.5 Conditions for Growth

Essential Requirements:

- 1. Water:
 - Cell enlargement medium
 - Maintains turgidity for extension growth
 - Medium for enzymatic activities

2. Oxygen:

Releases metabolic energy

• Essential for growth activities

3. Nutrients:

- Macro and microelements
- Protoplasm synthesis
- Energy source

4. Optimum Temperature:

- Each plant has specific range
- Deviation can be detrimental

5. Environmental Signals:

- Light and gravity
- Affect specific growth phases

13.2 DIFFERENTIATION, DEDIFFERENTIATION AND REDIFFERENTIATION

Differentiation:

Definition: Process where cells mature to perform specific functions **Process**: Structural changes in cell walls and protoplasm **Example**: Tracheary element formation - cells lose protoplasm, develop strong lignocellulosic walls

Dedifferentiation:

Definition: Differentiated cells regain capacity to divide under certain conditions **Examples**:

- Interfascicular cambium formation from parenchyma
- Cork cambium from differentiated cells
- Plant tissue culture callus formation

Redifferentiation:

Definition: Dedifferentiated cells lose division capacity again and mature for specific functions

Examples: Secondary tissues in woody plants

Open Differentiation:

- Cells from same meristem develop different structures
- Final cell structure determined by position
- Examples:
 - Root cap cells (away from apex)
 - Epidermal cells (at periphery)

13.3 DEVELOPMENT

Definition:

Development includes all changes from seed germination to senescence, encompassing the entire life cycle.

Sequence of Development:

Cell Division → **Plasmatic Growth** → **Expansion (Elongation)** → **Differentiation** → **Maturation**

 \rightarrow Senescence \rightarrow Death

Plasticity in Development:

Definition: Ability to form different structures in response to environment or life phases

Examples of Plasticity:

- 1. **Heterophylly**: Different leaf shapes in same plant
 - Juvenile vs Mature: Cotton, coriander, larkspur

• **Environmental**: Buttercup (air vs water leaves)

Development Control:

Development = Growth + Differentiation

Controlling Factors:

Intrinsic (Internal):

- Genetic factors (intracellular)
- Chemical factors Plant Growth Regulators (intercellular)

Extrinsic (External):

• Light, temperature, water, oxygen, nutrition

13.4 PLANT GROWTH REGULATORS (PGRs)

13.4.1 Characteristics

Chemical Composition:

- Indole compounds: Indole-3-acetic acid (IAA)
- Adenine derivatives: Kinetin
- Carotenoid derivatives: Abscisic acid (ABA)
- **Terpenes**: Gibberellic acid (GA₃)
- **Gases**: Ethylene (C₂H₄)

Alternative Names:

Plant growth substances, plant hormones, phytohormones

Classification by Function:

Group I - Growth Promoters:

- Functions: Cell division, enlargement, pattern formation, flowering, fruiting
- Examples: Auxins, Gibberellins, Cytokinins

Group II - Growth Inhibitors/Stress Responses:

- **Functions**: Dormancy, abscission, stress responses
- **Examples**: Abscisic acid, Ethylene (mostly inhibitory)

13.4.2 The Discovery of Plant Growth Regulators

All five major PGR groups were discovered accidentally:

1. Auxins - Charles Darwin (1880):

- **Observation**: Coleoptile phototropism in canary grass
- **Conclusion**: Transmittable influence from coleoptile tip
- **Isolation**: F.W. Went from oat seedling coleoptile tips

2. Gibberellins - E. Kurosawa (1926):

- **Disease**: 'Bakanae' (foolish seedling) in rice
- Cause: Gibberella fujikuroi fungus
- **Discovery**: Active substances in sterile fungal filtrates

3. Cytokinins - F. Skoog:

- **Observation**: Tobacco stem callus proliferation
- Requirement: Auxin + supplements (coconut milk, yeast extract, DNA)

• Isolation: Miller et al. (1955) - crystallized kinetin

4. Abscisic Acid (1960s):

• **Sources**: Three independent research groups

• Names: Inhibitor-B, Abscission II, Dormin

• **Result**: All proved chemically identical - ABA

5. Ethylene - H.H. Cousins (1910):

• **Observation**: Volatile substance from ripe oranges

• Effect: Hastened banana ripening

• **Identification**: Gaseous ethylene

13.4.3 Physiological Effects of Plant Growth Regulators

13.4.3.1 Auxins

Etymology: Greek 'auxein' = to grow **First Source**: Human urine

Natural Auxins:

• IAA: Indole-3-acetic acid

• IBA: Indole butyric acid

Synthetic Auxins:

• NAA: Naphthalene acetic acid

• **2,4-D**: 2,4-dichlorophenoxyacetic acid

Major Functions:

1. Root Initiation:

- Promotes rooting in stem cuttings
- Widely used in plant propagation

2. Flowering:

• Promotes flowering (e.g., pineapples)

3. Abscission Control:

- Prevents early fruit and leaf drop
- Promotes abscission in mature organs

4. Apical Dominance:

- Growing apical bud inhibits lateral buds
- Decapitation promotes lateral bud growth
- **Applications**: Tea plantations, hedge-making

5. Parthenocarpy:

- Fruit development without fertilization
- **Example**: Seedless tomatoes

6. Herbicidal Action:

- 2,4-D kills dicot weeds
- Safe for mature monocots
- **Use**: Weed-free lawn preparation

7. Other Effects:

• Controls xylem differentiation

• Promotes cell division

13.4.3.2 Gibberellins

Diversity:

- Over 100 gibberellins known (GA₁, GA₂, GA₃...)
- Found in fungi and higher plants
- GA₃ (Gibberellic acid) most studied
- All GAs are acidic

Major Functions:

1. Axis Elongation:

- Increases stem length
- **Example**: Grape stalk elongation

2. Fruit Development:

- Apple elongation and shape improvement
- Delays senescence
- Extended market period

3. Industrial Applications:

- **Brewing**: Speeds malting process
- **Sugarcane**: 20 tonnes per acre yield increase

4. Reproductive Effects:

• Hastens maturity in juvenile conifers

• Early seed production

5. Bolting:

- Promotes internode elongation before flowering
- **Examples**: Beet, cabbage, rosette plants

13.4.3.3 Cytokinins

Discovery: Kinetin from autoclaved herring sperm DNA **Natural Form**: Zeatin (from corn kernels, coconut milk)

Synthesis Locations:

- Root apices
- Developing shoot buds
- Young fruits
- Regions of rapid cell division

Major Functions:

1. Cell Division:

- Specific effects on cytokinesis
- Promotes cell division activity

2. Organ Development:

- New leaf production
- Chloroplast development in leaves
- Lateral shoot growth
- Adventitious shoot formation

3. Apical Dominance:

- Overcomes apical dominance
- Promotes lateral bud growth

4. Senescence Delay:

- Nutrient mobilization
- Delays leaf senescence

13.4.3.4 Ethylene

Nature: Simple gaseous PGR Synthesis: High amounts in senescent tissues and ripening fruits

Major Functions:

1. Seedling Development:

- Horizontal growth orientation
- Axis swelling
- Apical hook formation in dicots

2. Senescence and Abscission:

- Promotes organ senescence
- Accelerates leaf and flower abscission

3. Fruit Ripening:

- Highly effective ripening agent
- Enhances respiration rate
- Respiratory Climacteric: Rise in respiration during ripening

4. Dormancy Breaking:

- Breaks seed and bud dormancy
- Examples: Peanut germination, potato tuber sprouting

5. Flooding Adaptation:

- Rapid internode/petiole elongation
- Keeps leaves above water in deep water rice

6. Root Development:

- Promotes root growth
- Increases root hair formation
- Enhanced absorption surface

7. Commercial Applications:

- Ethephon: Synthetic ethylene source
- Fruit Ripening: Tomatoes, apples
- **Abscission**: Cotton, cherry, walnut thinning
- **Sex Expression**: Promotes female flowers in cucumbers

13.4.3.5 Abscisic Acid (ABA)

Alternative Name: Stress hormone

Major Functions:

1. Growth Inhibition:

• General plant growth inhibitor

• Inhibits plant metabolism

2. Seed Development:

- Inhibits seed germination
- Promotes seed dormancy
- Helps seeds withstand desiccation

3. Stress Responses:

- Stimulates stomatal closure
- Increases stress tolerance
- Response to water, salt, temperature stress

4. Antagonistic Effects:

- Often acts opposite to gibberellins
- Balances growth promotion

PGR Interactions:

Types of Interactions:

• **Complementary**: Work together

• **Antagonistic**: Oppose each other

• Individualistic: Independent action

• **Synergistic**: Enhanced combined effect

Examples of Multiple PGR Events:

- Seed/bud dormancy
- Abscission

- Senescence
- Apical dominance

NEET-Specific Important Points

High-Yield Topics for NEET:

1. Growth Patterns:

- Arithmetic vs geometric growth
- Sigmoid curve phases
- Mathematical expressions

2. Growth Phases:

- Meristematic, elongation, maturation
- Characteristics of each phase

3. **PGR Discovery and Functions**:

- Historical discoveries
- Major functions of each PGR
- Commercial applications

4. Differentiation Processes:

- Differentiation, dedifferentiation, redifferentiation
- Examples and significance

Common NEET Question Patterns:

1. Identification Questions:

- PGR effects and applications
- Growth phase characteristics

- Differentiation examples
- 2. Function-Based Questions:
 - Which PGR for specific function
 - Growth measurements
 - Developmental processes
- 3. Application Questions:
 - Commercial uses of PGRs
 - Agricultural applications
 - Practical examples

Memory Aids and Mnemonics

Five Major PGRs:

"All Good Children Eat Apple"

- Auxins
- **G**ibberellins
- **C**ytokinins
- **E**thylene
- Abscisic acid

Auxin Functions:

"RAPH Helps Plants"

- Rooting
- Apical dominance
- **P**arthenocarpy

• **H**erbicide

Growth Phases:

"Many Elephants Migrate"

- **M**eristematic
- **E**longation
- Maturation

Gibberellin Effects:

"Big Fruits Make Sales"

- **B**olting
- Fruit elongation
- **M**alting process
- **S**tem elongation

Practice Questions for NEET

Multiple Choice Questions:

- 1. Which PGR is known as stress hormone? a) Auxin b) Gibberellin c) Cytokinin d) Abscisic acid
- 2. Apical dominance is caused by: a) Gibberellins b) Auxins c) Cytokinins d) Ethylene
- 3. Sigmoid growth curve is characteristic of: a) Arithmetic growth b) Geometric growth c) Linear growth d) Exponential growth

Short Answer Questions:

- 1. Define differentiation, dedifferentiation, and redifferentiation with examples.
- 2. What is apical dominance? How is it commercially exploited?

3. Explain the phases of growth with their characteristics.

Long Answer Questions:

- 1. Describe the discovery and physiological effects of auxins.
- 2. Compare arithmetic and geometric growth patterns with mathematical expressions.
- 3. Explain how plant growth regulators interact synergistically and antagonistically.

Application-Based Questions for NEET:

Which PGR would you use to:

Purpose	PGR	Explanation	
Induce rooting in twig	Auxin	Promotes adventitious root formation	
Quickly ripen fruit	Ethylene	Accelerates fruit ripening process	
Delay leaf senescence	Cytokinin	Promotes nutrient mobilization	
Induce axillary bud growth	Cytokinin	Overcomes apical dominance	
'Bolt' a rosette plant	Gibberellin	Promotes internode elongation	
Immediate stomatal closure	Abscisic acid	Stress hormone response	
◀	1	>	

Summary Table: PGR Overview

PGR	Source	Major Functions	Commercial Uses
Auxins	Growing apices	Rooting, apical dominance	Plant propagation, herbicides
Gibberellins	Various tissues	Stem elongation, bolting	Brewing, sugarcane yield
Cytokinins	Root apices	Cell division, senescence delay	Tissue culture
Ethylene	Senescent tissues	Ripening, abscission	Fruit ripening, flower induction
Abscisic acid	Various tissues	Dormancy, stress response	Stress tolerance
4	1	'	>

Key Equations and Formulas:

- 1. **Arithmetic Growth**: Lt = L0 + rt
- 2. **Geometric Growth**: W1 = W0 \times e^(rt)
- 3. Relative Growth Rate: $(W1 W0)/W0 \times T$
- 4. Absolute Growth Rate: (W1 W0)/T

EXAM SPRINT - Master Plant Growth and Development with focused study on PGR functions, growth patterns, and developmental processes. Understanding applications and interactions is key to NEET success.

Source: NCERT Biology Class 11, Chapter 13 - Comprehensive coverage for NEET preparation