Chapter 11: Photosynthesis in Higher Plants

Comprehensive Study Notes

Class 11 Biology - NCERT Based

EXAM SPRINT - Complete Coverage for NEET and Board Examinations

Introduction

Photosynthesis is the fundamental process that sustains life on Earth. Green plants, as autotrophs, synthesize their own food through this physico-chemical process, converting light energy into chemical energy. All heterotrophic organisms, including humans, depend directly or indirectly on the products of photosynthesis for their survival.

Significance of Photosynthesis:

- 1. **Primary food source**: Foundation of all food chains on Earth
- 2. **Oxygen production**: Releases O₂ into the atmosphere for aerobic life
- 3. **Energy conversion**: Transforms solar energy into usable chemical energy
- 4. **Carbon fixation**: Removes CO₂ from atmosphere, mitigating greenhouse effect

11.1 FOUNDATIONAL KNOWLEDGE

Basic Requirements for Photosynthesis

Early experiments established three essential requirements:

Essential Components

- 1. **Chlorophyll**: Green pigment in leaves
- 2. **Light**: Energy source for the process

3. Carbon dioxide: Raw material for carbohydrate synthesis

Classical Experiments

Starch Test Experiment

Procedure: Variegated leaves or leaves partially covered with black paper exposed to light **Observation**: Starch formation occurs only in green parts exposed to light **Conclusion**: Both chlorophyll and light are essential for photosynthesis

CO₂ Requirement Experiment

Setup: Leaf partially enclosed in test tube with KOH-soaked cotton **Result**:

- Exposed portion: Starch positive
- Enclosed portion (CO₂ absent): Starch negative **Conclusion**: CO₂ is essential for photosynthesis

11.2 HISTORICAL EXPERIMENTS

Joseph Priestley's Experiments (1770)

The Bell Jar Series

Observations:

- Candle extinguishes in closed bell jar
- Mouse suffocates in closed space
- Crucial discovery: Plant restores air quality, allowing candle to burn and mouse to survive

Hypothesis: "Plants restore to the air whatever breathing animals and burning candles remove"

Significance: First evidence that plants purify air by releasing oxygen

Jan Ingenhousz's Contributions (1730-1799)

Light Dependency Discovery

Experiment: Priestley's setup tested in sunlight vs. darkness **Results**:

• **Sunlight**: Oxygen bubble formation around green plant parts

• **Darkness**: No bubble formation

Conclusions:

- 1. Sunlight is essential for the purifying process
- 2. Only green parts of plants release oxygen
- 3. Established light-dependent nature of photosynthesis

Julius von Sachs (1854)

Glucose Production Evidence

Discoveries:

- Provided evidence for glucose production during plant growth
- Identified glucose storage as starch
- Located chlorophyll in special bodies (chloroplasts) within plant cells
- Established that glucose synthesis occurs in green parts

T.W. Engelmann's Spectrum Experiment (1843-1909)

Action Spectrum Discovery

Method: Used prism to split light into spectral components, illuminated *Cladophora* in bacterial suspension **Results**: Bacteria accumulated in blue and red light regions **Significance**: First action spectrum of photosynthesis, correlating with chlorophyll absorption

Cornelius van Niel's Revolutionary Work (1897-1985)

Universal Photosynthesis Equation

Discovery: Photosynthesis is essentially a light-dependent reduction reaction

General equation:

$$2H_2A + CO_2$$
 --Light--> $[CH_2O] + H_2O + 2A$

For green plants:

- $H_2A = H_2O$ (hydrogen donor)
- A = O₂ (oxidation product)

Key insight: O₂ evolved comes from H₂O, not CO₂

Modern Photosynthesis Equation

$$6CO_2 + 12H_2O --Light--> C_6H_{12}O_6 + 6H_2O + 6O_2$$

Note: 12 H₂O molecules required because:

- 6 H₂O for hydrogen atoms in glucose
- 6 H₂O for oxygen evolution
- Net water consumption = 6 H₂O

11.3 LOCATION OF PHOTOSYNTHESIS

Structural Organization

Tissue Level

Primary sites: Green leaves and other photosynthetic parts **Cellular level**: Mesophyll cells containing numerous chloroplasts

Chloroplast Orientation

- Optimal light: Chloroplasts align parallel to cell walls
- Intense light: Chloroplasts orient perpendicular to reduce damage

Chloroplast Structure and Function

Membranous System

- Grana: Stacked thylakoids
- Stroma lamellae: Interconnecting unstacked thylakoids
- **Stroma**: Fluid matrix surrounding membrane system

Division of Labor

Membrane system (Thylakoids):

- Light energy trapping
- ATP and NADPH synthesis
- Location of light reactions (photochemical reactions)

Stroma:

- CO₂ fixation
- Sugar synthesis
- Location of dark reactions (carbon reactions/Calvin cycle)

Important Note: "Dark reactions" don't occur in darkness - they're light-independent but depend on light reaction products.

11.4 PHOTOSYNTHETIC PIGMENTS

Pigment Diversity and Function

Chromatographic Separation

Paper chromatography reveals four main pigments:

1. Chlorophyll a: Bright/blue-green (most abundant plant pigment globally)

2. **Chlorophyll b**: Yellow-green

3. Xanthophylls: Yellow

4. Carotenoids: Yellow to yellow-orange

Absorption and Action Spectra

Chlorophyll a Absorption

Peak absorption:

- Blue region (~430-450 nm)
- Red region (~660-680 nm)
- Minimal green light absorption (explains green appearance)

Action Spectrum Analysis

Correlation: Maximum photosynthesis occurs in blue and red regions **Conclusion**: Chlorophyll a is the chief photosynthetic pigment

Accessory Pigments

Function:

• Light harvesting: Absorb different wavelengths and transfer energy to chlorophyll a

- Photoprotection: Protect chlorophyll a from photo-oxidation
- Efficiency enhancement: Utilize broader spectrum of light

Significance: Enable photosynthesis across wider range of light conditions

11.5 LIGHT REACTIONS

Photochemical Phase Overview

Components:

- Light absorption
- Water splitting
- Oxygen release
- Formation of ATP and NADPH

Photosystem Organization

Light Harvesting Complexes (LHC)

Structure: Hundreds of pigment molecules bound to proteins **Function**: Capture light energy and funnel to reaction center

Photosystem I (PS I)

Reaction center: P700 (chlorophyll a absorbing at 700 nm) **Location**: Both grana and stroma lamellae

Photosystem II (PS II)

Reaction center: P680 (chlorophyll a absorbing at 680 nm) Location: Primarily in grana

Note: Named in order of discovery, not functional sequence

Antenna Complex Function

Components: All pigments except one chlorophyll a molecule per photosystem **Purpose**: Maximize light capture efficiency **Mechanism**: Energy transfer to reaction center chlorophyll

11.6 ELECTRON TRANSPORT CHAIN

The Z-Scheme

Photosystem II Pathway

1. Excitation: P680 absorbs 680 nm light

2. **Electron elevation**: Electrons move to higher energy orbital

3. **Electron transport**: Transfer through cytochrome complex

4. **Energy release**: Downhill movement in redox potential

Photosystem I Pathway

1. **Excitation**: P700 absorbs 700 nm light

2. Further elevation: Electrons reach even higher potential

3. **NADP+ reduction**: Final electron acceptor becomes NADPH + H+

Z-Scheme Characteristics

Shape origin: Characteristic zigzag pattern when carriers plotted on redox potential scale **Electron** flow: PS II \rightarrow Electron transport \rightarrow PS I \rightarrow NADP+ reduction

11.6.1 Water Splitting Complex

Photolysis Reaction

 $2H_2O \rightarrow 4H + 4e^- + O_2$

Location and Significance

Position: Inner side of thylakoid membrane (lumen side) **Function**: Replenish electrons lost from PS II **Product release**:

- H+ ions: Released into lumen
- O₂: Diffuses out of chloroplast
- Electrons: Replace those lost from P680

11.6.2 Phosphorylation Types

Non-cyclic Photophosphorylation

Process: Both PS I and PS II function in series **Products**: ATP + NADPH + O_2 **Electron flow**: PS II \rightarrow ETC \rightarrow PS I \rightarrow NADP+ **Significance**: Provides both energy currency and reducing power

Cyclic Photophosphorylation

Process: Only PS I functions, electrons return to PS I **Products**: ATP only (no NADPH or O₂) **Location**: Primarily stroma lamellae **Conditions**:

- When PS II is non-functional
- Light wavelengths > 680 nm available
- When additional ATP needed

Purpose: Supplements ATP production to meet Calvin cycle requirements

11.6.3 Chemiosmotic Hypothesis

Proton Gradient Development

Mechanism: Three processes create H+ gradient across thylakoid membrane:

- 1. Water splitting: H+ released into lumen
- 2. **Proton pumping**: Electron transport moves H+ from stroma to lumen
- 3. NADP+ reduction: H+ consumed from stroma

ATP Synthesis Mechanism

ATP synthase structure:

- **CF**₀: Transmembrane channel for proton passage
- **CF**₁: Catalytic unit protruding into stroma

Process:

- 1. Proton gradient creates electrochemical potential
- 2. H+ flows through CF₀ down concentration gradient
- 3. Energy released causes CF₁ conformational change
- 4. ATP synthesis from ADP + Pi

Requirements for Chemiosmosis

- 1. **Membrane**: Thylakoid membrane
- 2. **Proton pump**: Electron transport chain
- 3. **Proton gradient**: Higher [H+] in lumen than stroma
- 4. **ATP synthase**: CF₀-CF₁ complex

11.7 CALVIN CYCLE (DARK REACTIONS)

Products of Light Reactions

Energy currency: ATP **Reducing power**: NADPH **By-product**: O₂ (diffuses out)

Calvin's Radiotracer Experiments

Method: Used radioactive ¹⁴C to trace CO₂ incorporation **Discovery**: First stable product is 3-phosphoglyceric acid (PGA) **Significance**: Established 3-carbon pathway (C₃ pathway)

11.7.1 CO₂ Acceptor Identification

The 5-Carbon Mystery

Question: What molecule accepts CO₂ to form 3-carbon PGA? **Expected**: 2-carbon compound **Reality**: Ribulose 1,5-bisphosphate (RuBP) - a 5-carbon sugar

Reaction:

RuBP + $CO_2 \rightarrow 2 \times PGA$ (3-carbon each)

11.7.2 Calvin Cycle Stages

Stage 1: Carboxylation

Process: CO_2 fixation into stable organic intermediate **Reaction**: RuBP + $CO_2 \rightarrow 2$ PGA **Enzyme**: RuBP carboxylase-oxygenase (RuBisCO) **Significance**: Most crucial step; RuBisCO is world's most abundant enzyme

Stage 2: Reduction

Process: Conversion of PGA to triose phosphate **Requirements per CO₂**:

- 2 ATP (for phosphorylation)
- 2 NADPH (for reduction) **Product**: Glyceraldehyde 3-phosphate (G3P)

Stage 3: Regeneration

Process: Regeneration of RuBP from triose phosphates **Requirement**: 1 ATP per RuBP regenerated

Significance: Maintains cycle continuity

Calvin Cycle Stoichiometry

Per CO₂ molecule:

• Input: 3 ATP + 2 NADPH

• Output: 1/6 glucose + 3 ADP + 2 NADP+

For one glucose molecule (6 CO₂):

Input:

- 6 CO₂
- 18 ATP
- 12 NADPH

Output:

- 1 C₆H₁₂O₆
- 18 ADP + 18 Pi
- 12 NADP+

ATP:NADPH ratio requirement: 3:2 **Explanation for cyclic phosphorylation**: Compensates for higher ATP requirement

11.8 C₄ PATHWAY

C₄ Plant Characteristics

Environmental Adaptations

- **Climate**: Dry tropical regions
- **Temperature tolerance**: Higher than C₃ plants
- **Light response**: Better performance under high light intensity
- **Productivity**: Greater biomass production
- **Photorespiration**: Absent

11.8.1 Kranz Anatomy

Structural Features

Bundle sheath cells:

- Large cells surrounding vascular bundles
- Multiple layers around vascular tissue
- Numerous chloroplasts
- Thick, impermeable walls
- No intercellular spaces

Kranz meaning: "Wreath" - describes cell arrangement pattern

Microscopic Identification

Method: Cut vertical sections of suspected C₄ plants **Observation**: Look for prominent bundle sheath cells **Examples**: Maize, sorghum, sugarcane

11.8.2 Hatch-Slack Pathway

Spatial Separation of Reactions

Mesophyll cells:

• **Primary acceptor**: Phosphoenolpyruvate (PEP) - 3-carbon

• **Enzyme**: PEP carboxylase (PEPcase)

• **Product**: Oxaloacetic acid (OAA) - 4-carbon

• **Absence**: No RuBisCO enzyme

Bundle sheath cells:

• **Process**: Calvin cycle operates here

• Enzyme: RuBisCO present, PEPcase absent

• **Function**: Sugar synthesis from concentrated CO₂

C₄ Cycle Steps

1. CO_2 fixation: PEP + $CO_2 \rightarrow OAA$ (in mesophyll)

2. **C₄ acid transport**: OAA → Malic acid/Aspartic acid → Bundle sheath

3. **Decarboxylation**: C_4 acid $\rightarrow CO_2 + 3$ -carbon compound (in bundle sheath)

4. **Regeneration**: 3-carbon compound → PEP (in mesophyll)

C₄ Advantage Mechanism

CO₂ concentration: C₄ acid breakdown concentrates CO₂ around RuBisCO **Result**: Favors carboxylase activity over oxygenase activity **Benefit**: Eliminates photorespiration, increases efficiency

11.9 PHOTORESPIRATION

RuBisCO Dual Function

Competitive Binding

Carboxylase activity: RuBP + $CO_2 \rightarrow 2$ PGA (productive) **Oxygenase activity**: RuBP + $O_2 \rightarrow PGA$ + Phosphoglycolate (wasteful)

Binding Affinity

CO₂ preference: Higher affinity when CO₂:O₂ ratio favors CO₂ **Competition**: Relative concentrations determine which substrate binds

Photorespiration Process

Oxygenation Reaction

 $RuBP + O_2 \rightarrow PGA + Phosphoglycolate (2-carbon)$

Characteristics of Photorespiration

- No sugar synthesis
- No ATP production
- ATP consumption (wasteful)
- **CO₂ release** (counterproductive)
- **Biological function**: Unknown

C₃ vs C₄ Photorespiration

C₃ Plants

Occurrence: Significant photorespiration **Reason**: No CO₂ concentrating mechanism **Impact**: Reduced photosynthetic efficiency

C₄ Plants

Occurrence: Negligible photorespiration **Reason**: CO₂ concentrating mechanism via C₄ acid breakdown **Result**: Higher productivity and yield

11.10 FACTORS AFFECTING PHOTOSYNTHESIS

Factor Categories

Internal (Plant) Factors

- Number, size, age, orientation of leaves
- Mesophyll cell organization
- Chloroplast number and arrangement
- Internal CO₂ concentration
- Chlorophyll content
- Genetic predisposition

External (Environmental) Factors

- Light (quality, intensity, duration)
- Temperature
- CO₂ concentration
- Water availability

Blackman's Law of Limiting Factors (1905)

Principle Statement

"If a chemical process is affected by more than one factor, then its rate will be determined by the factor which is nearest to its minimal value"

Practical Application

Scenario: Despite optimal light and CO₂, low temperature prevents photosynthesis **Implication**: Rate determined by most limiting factor at any given time

11.10.1 Light as a Limiting Factor

Light Intensity Relationship

Low intensities: Linear relationship between light and CO₂ fixation **High intensities**: Rate plateaus as other factors become limiting **Light saturation**: Occurs at ~10% of full sunlight

Light Quality Effects

Optimal wavelengths: Blue (430-450 nm) and red (660-680 nm) **Photosynthetic efficiency**: Matches chlorophyll absorption spectrum

Light Duration (Photoperiod)

Effect: Influences overall daily photosynthetic output **Seasonal variation**: Affects annual productivity

Excessive Light

Consequence: Chlorophyll breakdown (photoinhibition) **Result**: Decreased photosynthetic rate **Plant response**: Various photoprotective mechanisms

11.10.2 Carbon Dioxide Concentration

Atmospheric Limitation

Current levels: 0.03-0.04% (300-400 ppm) **Optimal range**: Up to 0.05% can increase rates **Toxic levels**: Beyond 0.05% causes long-term damage

C₃ vs C₄ Response Patterns

C₃ plants:

- Respond to CO₂ increase beyond 450 μL L⁻¹
- Current atmospheric levels are limiting
- Used in greenhouse cultivation (tomatoes, bell peppers)

C₄ plants:

- Saturate at ~360 μL L⁻¹
- Less responsive to CO₂ enrichment
- Already adapted to low CO₂ conditions

11.10.3 Temperature Effects

Reaction Sensitivity

Dark reactions: Highly temperature sensitive (enzymatic) **Light reactions**: Less temperature sensitive

Optimal Temperature Ranges

C₃ plants: 20-25°C optimum C₄ plants: 30-40°C optimum

Habitat Adaptation

Tropical plants: Higher temperature optimum **Temperate plants**: Lower temperature optimum **Adaptation significance**: Reflects evolutionary climate history

11.10.4 Water Stress Effects

Direct vs Indirect Effects

Direct effect: Water is a reactant in light reactions (minimal impact) **Indirect effects**: More significant impact on plant physiology

Physiological Responses

Stomatal closure: Reduces CO₂ availability **Leaf wilting**: Decreases photosynthetic surface area **Metabolic stress**: Reduces overall cellular activity

COMPARATIVE ANALYSIS: C₃ vs C₄ PLANTS

Structural Differences

Feature	C₃ Plants	C ₄ Plants	
Leaf anatomy	No Kranz anatomy	Kranz anatomy present	
Bundle sheath	Thin-walled, few chloroplasts	Thick-walled, many chloroplasts	
Cell types for CO₂ fixation	One (mesophyll)	Two (mesophyll + bundle sheath)	
◀	'	>	

Biochemical Differences

Aspect	C₃ Plants	C ₄ Plants		
Primary CO₂ acceptor	RuBP (5-carbon)	PEP (3-carbon)		
First stable product	PGA (3-carbon)	OAA (4-carbon)		
Calvin cycle location	Mesophyll cells	Bundle sheath cells		
Initial fixation enzyme	RuBisCO	PEPcase	PEPcase	
RuBisCO presence	Yes (mesophyll)	Yes (bundle sheath only)		
PEPcase presence	No	Yes (mesophyll)		
◀	•	<u>'</u>	•	

Physiological Differences

Characteristic	C₃ Plants	C ₄ Plants
Photorespiration	High	Negligible
CO₂ fixation rate (high light)	Lower	Higher
Temperature optimum	20-25°C	30-40°C
Water use efficiency	Lower	Higher
Light saturation point	Lower	Higher
∢	·	>

Ecological and Economic Significance

C₃ Plants

Examples: Rice, wheat, barley, cotton **Habitat**: Temperate regions, moderate temperatures

Advantage: Efficient under moderate conditions **Limitation**: Photorespiration reduces efficiency

C₄ Plants

Examples: Maize, sugarcane, sorghum, amaranth **Habitat**: Tropical regions, high temperatures **Advantages**: Higher productivity, drought tolerance **Applications**: Important crop plants in tropical agriculture

EVOLUTIONARY AND ECOLOGICAL SIGNIFICANCE

Evolutionary Perspectives

C₃ Pathway

- **Origin**: Ancient, evolved when atmospheric CO₂ was higher
- **Distribution**: Widespread, majority of plant species
- Adaptation: Suited for ancestral atmospheric conditions

C₄ Pathway

- Origin: More recent evolutionary adaptation
- **Selection pressure**: Response to declining atmospheric CO₂
- Convergent evolution: Evolved independently multiple times
- **Specialization**: Adaptation to specific environmental conditions

Ecological Roles

Primary Productivity

Global impact: Photosynthesis drives virtually all ecosystems **Energy flow**: Foundation of all food webs **Biomass production**: Determines ecosystem carrying capacity

Environmental Services

Oxygen production: Maintains atmospheric O₂ levels **Carbon sequestration**: Removes CO₂ from atmosphere **Climate regulation**: Influences local and global climate patterns

EXAM-ORIENTED KEY POINTS

High-Yield Topics for NEET

Historical Experiments

- 1. **Priestley's bell jar**: Plant-animal interaction
- 2. **Ingenhousz light dependency**: Sunlight requirement
- 3. Van Niel's equation: Universal photosynthesis concept
- 4. Calvin's ¹⁴C experiment: CO₂ fixation pathway discovery

Photosynthesis Equation

$$6CO_2 + 12H_2O --Light--> C_6H_{12}O_6 + 6H_2O + 6O_2$$

Key points:

- O₂ comes from water, not CO₂
- 12 H₂O required (6 net consumption)
- Light energy converted to chemical energy

Light Reactions

- 1. **Photosystem organization**: PS I (P700) and PS II (P680)
- 2. **Electron transport**: Z-scheme pathway
- 3. **Water splitting**: Source of replacement electrons
- 4. **ATP synthesis**: Chemiosmotic mechanism
- 5. **Products**: ATP, NADPH, O₂

Calvin Cycle

- 1. **Location**: Stroma of chloroplasts
- 2. **Phases**: Carboxylation, Reduction, Regeneration
- 3. **Key enzyme**: RuBisCO (most abundant enzyme)
- 4. **Stoichiometry**: 3 ATP + 2 NADPH per CO₂ fixed
- 5. **Product**: Glucose (6 turns of cycle)

C₄ Pathway

- 1. **Anatomy**: Kranz structure with bundle sheath cells
- 2. **Spatial separation**: Different cell types for different reactions
- 3. **Advantage**: Eliminates photorespiration
- 4. **Efficiency**: Higher productivity under stress conditions

Limiting Factors

- 1. Blackman's law: Rate limited by most deficient factor
- 2. **Light**: Rarely limiting except in shade
- 3. **CO₂**: Major limiting factor for C₃ plants
- 4. **Temperature**: Affects enzymatic reactions
- 5. Water: Indirect effects through stomatal closure

Common NEET Question Patterns

Process-Based Questions

- Explain light reaction mechanism
- Describe Calvin cycle steps
- Compare C₃ and C₄ pathways
- Analyze photorespiration effects

Quantitative Problems

- Calculate ATP and NADPH requirements
- Determine glucose production from CO₂ input
- Analyze limiting factor scenarios

Comparative Analysis

- C₃ vs C₄ plant characteristics
- Cyclic vs non-cyclic phosphorylation
- Light reaction vs dark reaction features

Application Questions

- Greenhouse CO₂ enrichment benefits
- Crop productivity optimization
- Environmental factor manipulation

Memory Aids and Mnemonics

Light Reaction Products

**"ATP NADPH Oxygen"

- **A**TP (energy currency)
- **N**ADPH (reducing power)
- **O**xygen (by-product)

Calvin Cycle Stages

**"Can Really Reproduce Glucose"

- **C**arboxylation (CO₂ fixation)
- **R**eduction (ATP + NADPH usage)
- **R**egeneration (RuBP renewal)
- **G**lucose (final product)

Photosystem Wavelengths

**"Seven Hundred, Six Eighty"

- Seven hundred (700 nm PS I)
- **S**ix eighty (680 nm PS II)

C₄ Plant Examples

"M**aize **S**ugarcane **S**orghum **A**maranth"

- Maize (corn)
- **S**ugarcane

- **S**orghum
- Amaranth

Limiting Factors

**"Light CO₂ Temperature Water"

- Light intensity/quality
- **C**arbon dioxide concentration
- **T**emperature
- **W**ater availability

Practice Questions for NEET

Multiple Choice Questions

- 1. **The oxygen evolved during photosynthesis comes from:** a) CO₂ only b) H₂O only c) Both CO₂ and H₂O d) Chlorophyll breakdown
- 2. In C₄ plants, the Calvin cycle occurs in: a) Mesophyll cells b) Bundle sheath cells c) Guard cells d) Epidermal cells
- 3. The first stable product of Calvin cycle is: a) RuBP b) OAA c) PGA d) Glucose
- 4. Which of the following is the most abundant enzyme in the world: a) PEPcase b) RuBisCOc) ATP synthase d) Cytochrome oxidase
- 5. **Photorespiration is absent in C₄ plants because:** a) They lack RuBisCO b) They have PEPcase c) CO₂ concentration is high around RuBisCO d) They lack chlorophyll

Short Answer Questions

- 1. Explain the significance of the light and dark reactions in photosynthesis.
- 2. Why is RuBisCO called a bifunctional enzyme?

- 3. How does the C₄ pathway eliminate photorespiration?
- 4. Describe the chemiosmotic mechanism of ATP synthesis in chloroplasts.
- 5. Explain why C₄ plants are more efficient than C₃ plants in tropical conditions.

Long Answer Questions

- 1. Describe the complete Calvin cycle with proper equations and energy requirements.
- 2. Explain the structure and function of photosystems in light reactions.
- 3. Compare and contrast C₃ and C₄ pathways of photosynthesis.
- 4. Analyze the various factors affecting the rate of photosynthesis.

Numerical Problems

- 1. Calculate the number of ATP and NADPH molecules required to produce 5 molecules of glucose through Calvin cycle.
- 2. If 18 CO₂ molecules are fixed through Calvin cycle, how many RuBP molecules will be regenerated?
- 3. Determine the net gain of glucose molecules when 72 ATP and 48 NADPH are available for Calvin cycle.

Important Equations and Formulas

Overall Photosynthesis

$$6CO_2 + 12H_2O --Light--> C_6H_{12}O_6 + 6H_2O + 6O_2$$

Water Splitting

$$2H_2O \rightarrow 4H^+ + 4e^- + O_2$$

NADP⁺ Reduction

 $NADP^+ + H^+ + 2e^- \rightarrow NADPH$

Calvin Cycle Carboxylation

RuBP + CO₂ --RuBisCO--> 2 PGA

C₄ Initial Fixation

PEP + CO₂ --PEPcase--> OAA

Photorespiration

RuBP + O₂ --RuBisCO--> PGA + Phosphoglycolate

Current Research Applications

Biotechnology Applications

Genetic engineering: Improving RuBisCO efficiency **C₄ rice**: Introducing C₄ pathway into rice **Artificial photosynthesis**: Solar energy conversion systems

Environmental Solutions

Carbon capture: Enhanced CO₂ fixation **Biofuels**: Photosynthetic organism cultivation **Climate change mitigation**: Increased carbon sequestration

Agricultural Improvements

Crop enhancement: Higher photosynthetic efficiency **Stress tolerance**: Better performance under

adverse conditions **Yield optimization**: Maximizing productivity through understanding limiting factors

EXAM SPRINT - Master photosynthesis through systematic study of historical discoveries, reaction mechanisms, pathway comparisons, and limiting factor analysis. Focus on quantitative relationships, comparative features, and practical applications for comprehensive NEET preparation.

Source: NCERT Biology Class 11, Chapter 11 - Complete coverage for NEET and Board examination success