Chapter 7: How do Organisms Reproduce?

Comprehensive Study Notes

Introduction

Reproduction is the biological process by which organisms create new individuals of their species. Unlike essential life processes (nutrition, respiration, excretion), reproduction is not necessary for individual survival but is crucial for species continuation.

Key Question: Why do organisms reproduce?

- Individual organisms don't need reproduction to stay alive
- Reproduction requires significant energy expenditure
- Yet, reproduction ensures species survival and genetic diversity
- Large numbers of similar organisms are what make species noticeable

7.1 Do Organisms Create Exact Copies of Themselves?

Basic Concepts

Body Design and Blueprints:

- Organisms look similar due to similar body designs
- Blueprints for body design are stored in DNA
- DNA in cell nucleus contains inheritance information
- DNA serves as information source for protein synthesis
- Different proteins lead to altered body designs

DNA Copying Process

Basic Event in Reproduction:

- 1. Creation of DNA copy using chemical reactions
- 2. Separation of two DNA copies into different cells
- 3. Each copy accompanied by cellular apparatus
- 4. Cell division results in two similar cells

Accuracy of DNA Copying:

- No biochemical reaction is absolutely reliable
- Copying errors create variations in DNA
- Some variations may be lethal (cell dies)
- Other variations are tolerable and create diversity
- This variation is the basis for evolution

7.1.1 The Importance of Variation

Population Stability:

- Consistent DNA copying maintains body design features
- Allows organisms to occupy specific ecological niches
- Reproduction linked to population stability

Environmental Changes:

- Niches can change due to external factors:
 - Temperature fluctuations
 - Water level variations
 - Natural disasters (meteorite hits)

- Populations without variation risk extinction
- Variations allow some individuals to survive environmental changes

Example: Bacterial population in temperate waters

- Global warming increases water temperature
- Most bacteria die from heat
- Heat-resistant variants survive and reproduce
- Variation ensures species survival over time

Review Questions:

- 1. What is the importance of DNA copying in reproduction?
- 2. Why is variation beneficial to the species but not necessarily for the individual?

7.2 Modes of Reproduction Used by Single Organisms

7.2.1 Fission

Definition: Cell division leading to creation of new individuals in unicellular organisms

Types of Fission:

Binary Fission:

- Simple splitting into two equal halves
- Examples: Bacteria, protozoa, Amoeba
- In Amoeba: Splitting can occur in any plane
- In Leishmania: Occurs in definite orientation due to whip-like structure

Multiple Fission:

- Division into many daughter cells simultaneously
- Example: Plasmodium (malarial parasite)

Budding in Yeast:

- Small buds emerge from parent cell
- Buds separate and grow independently

7.2.2 Fragmentation

Process:

- Multi-cellular organisms break into smaller pieces
- Each fragment grows into new individual
- Example: Spirogyra filaments break up upon maturation
- Simple body organization allows this method

Limitations:

- Complex multi-cellular organisms cannot use fragmentation
- Specialized cells organized as tissues and organs
- Definite organ positioning required
- Cell-by-cell division would be impractical

7.2.3 Regeneration

Definition: Ability of differentiated organisms to grow new individuals from body parts

Examples:

- Hydra: Cut into pieces, each grows into complete organism
- Planaria: Similar regenerative ability

Mechanism:

- Specialized cells proliferate rapidly
- Mass of cells differentiates into various cell types
- Organized developmental sequence occurs

Note: Regeneration ≠ Reproduction (organisms don't normally depend on being cut)

7.2.4 Budding

Process in Hydra:

- Uses regenerative cells for reproduction
- Bud develops as outgrowth from repeated cell division
- Specific site for bud development
- Mature buds detach and become independent individuals

7.2.5 Vegetative Propagation

Plant Reproduction:

- Root, stem, and leaves develop into new plants
- Unlike animals, plants can reproduce through vegetative parts

Agricultural Applications:

- Layering and grafting techniques
- Examples: Sugarcane, roses, grapes
- Plants flower and fruit earlier than seed-grown plants

Advantages:

- Propagation of plants that lost seed-producing capacity (banana, orange, rose, jasmine)
- Genetic similarity to parent plant
- Retention of all parent characteristics

Examples:

- Bryophyllum: Buds in leaf notches fall and develop into new plants
- Money plant: Pieces with leaves can grow new plants
- Potato: Buds/eyes develop into new plants

Tissue Culture:

- Laboratory technique for plant propagation
- Cells from growing tip placed in artificial medium
- Rapid division forms callus
- Hormones promote growth and differentiation
- Disease-free plant production

7.2.6 Spore Formation

Structure and Function:

- Bread mould (Rhizopus) forms thread-like hyphae (non-reproductive)
- Sporangia: Blob-on-stick structures containing spores
- Spores: Cells that develop into new individuals
- Thick protective walls shield spores until favorable conditions

Asexual Reproduction Summary: All above methods create new generations from single individual

Review Questions:

- 1. How does binary fission differ from multiple fission?
- 2. How will an organism benefit if it reproduces through spores?
- 3. Why cannot complex organisms reproduce through regeneration?
- 4. Why is vegetative propagation practiced for growing some plants?
- 5. Why is DNA copying essential in reproduction?

7.3 Sexual Reproduction

Basic Concept

Requirements:

- Involvement of two individuals
- Both male and female needed for new generation
- Examples: Bulls and cows for calves, roosters and hens for chicks

7.3.1 Why the Sexual Mode of Reproduction?

Variation Generation:

- DNA copying creates some variations (slow process)
- Sexual reproduction combines variations from two individuals
- Creates novel combinations of variants
- Accelerates variation generation process

The DNA Problem:

- Combining DNA from two individuals doubles DNA content
- Could disrupt cellular apparatus control

Solution needed to maintain DNA balance

Meiosis Solution:

- Specialized cells in reproductive organs
- Contain half the chromosomes of body cells
- Half the DNA content compared to non-reproductive cells
- Fusion restores normal chromosome number

Gamete Specialization:

- Simple organisms: Similar germ-cells
- Complex organisms: Specialized gametes
 - Female gamete: Large, contains food stores
 - Male gamete: Smaller, motile
- Specialization leads to different reproductive organs

7.3.2 Sexual Reproduction in Flowering Plants

Flower Structure:

- Reproductive parts: Stamens (male) and Pistil (female)
- Non-reproductive parts: Sepals and petals

Flower Types:

- Unisexual: Contains either stamens or pistil (papaya, watermelon)
- Bisexual: Contains both stamens and pistil (Hibiscus, mustard)

Male Reproductive System:

• Stamen: Male reproductive part

- Produces pollen grains (yellowish powder)
- Contains male germ-cells

Female Reproductive System:

- Pistil: Female reproductive part
- Three parts:
 - 1. Ovary: Swollen bottom part containing ovules
 - 2. Style: Middle elongated part
 - 3. Stigma: Terminal sticky part

Fertilization Process:

- 1. Pollination: Pollen transfer from stamen to stigma
 - Self-pollination: Within same flower
 - Cross-pollination: Between different flowers
 - Agents: Wind, water, animals
- 2. Pollen tube formation: Grows from pollen grain through style to ovary
- 3. Fertilization: Male germ-cell fuses with female gamete in ovule
- 4. Zygote formation: Capable of growing into new plant

Post-Fertilization Changes:

- Zygote divides to form embryo within ovule
- Ovule develops tough coat → becomes seed
- Ovary grows and ripens → becomes fruit
- Other flower parts shrivel and fall off
- Seed contains embryo (future plant)

• Germination: Seed develops into seedling under appropriate conditions

7.3.3 Reproduction in Human Beings

Puberty and Sexual Maturation

General Body Changes (Both Sexes):

- Height increase continues from early age
- Tooth development and replacement
- Thick hair growth in armpits and genital area
- Skin darkening in genital area
- Thin hair on legs, arms, and face
- Oily skin and pimple development
- Increased body and self-awareness

Sex-Specific Changes:

Girls:

- Breast size increase
- Nipple skin darkening
- Menstruation begins

Boys:

- Thick facial hair growth
- Voice cracking/deepening
- Penis enlargement and erection capability

Characteristics of Puberty:

- Gradual process over months and years
- Changes don't occur simultaneously
- Age varies between individuals
- Rate varies (early/quick vs slow)
- Individual differences in patterns (like nose/finger shapes)

Why Sexual Maturation at This Age:

- Body resources initially focused on general growth
- Reproductive tissue maturation secondary priority
- As general growth slows, reproductive tissues mature
- Period of adolescent sexual maturation called puberty

Connection to Reproduction:

- Sexual maturity signals readiness for mating
- Physical changes indicate reproductive capability
- Special organs needed for sexual reproduction
- Female organs must accommodate pregnancy and breastfeeding

7.3.3 (a) Male Reproductive System

Components and Functions:

Testes:

- Location: Outside abdominal cavity in scrotum
- Function: Sperm formation (germ-cell production)
- Temperature requirement: Lower than normal body temperature

- Hormone production: Testosterone
- Testosterone effects: Sperm formation regulation, puberty changes

Transport System:

- Vas deferens: Delivers sperm from testes
- Union with urinary bladder tube
- Urethra: Common passage for sperm and urine

Accessory Glands:

- Prostate gland: Adds secretions to sperm
- Seminal vesicles: Contribute to seminal fluid
- Functions: Easier transport, nutrition provision

Sperm Characteristics:

- Tiny bodies with genetic material
- Long tail for movement toward female germ-cell
- Contained in nutritive fluid

7.3.3 (b) Female Reproductive System

Ovaries:

- Function: Egg production (female germ-cells)
- Hormone production
- Birth condition: Contain thousands of immature eggs
- Puberty: Eggs start maturing (one per month)

Transport and Development System:

Oviduct/Fallopian Tube:

- Carries egg from ovary to uterus
- Site where sperm may encounter egg
- Location of fertilization

Uterus:

- Elastic bag-like structure
- Two oviducts unite to form uterus
- Prepared monthly for embryo implantation

Cervix and Vagina:

- Uterus opens into vagina through cervix
- Vaginal passage: Entry point for sperm during intercourse

Fertilization and Development Process:

- 1. Sperm entry through vaginal passage
- 2. Upward travel to oviduct
- 3. Sperm-egg encounter and fertilization
- 4. Zygote formation and cell division
- 5. Embryo formation (ball of cells)
- 6. Implantation in uterine lining
- 7. Organ development → foetus formation

Pregnancy Support System:

Uterine Preparation:

- Monthly preparation for embryo reception
- Lining thickening with rich blood supply
- Designed for embryo nourishment

Placenta:

- Special tissue connecting mother and embryo
- Disc embedded in uterine wall
- Structure:
 - Villi on embryo's side
 - Blood spaces on mother's side
- Functions:
 - Large surface area for exchange
 - Glucose and oxygen transfer (mother → embryo)
 - Waste removal (embryo → mother)

Birth Process:

- Development period: Approximately 9 months
- Birth mechanism: Rhythmic uterine muscle contractions

7.3.3 (c) What Happens When Egg is Not Fertilized?

Menstruation Cycle:

- Unfertilized egg lifespan: About 1 day
- Monthly egg release from ovary
- Uterine lining preparation each month
- Lining becomes thick and spongy for potential embryo

- Without fertilization: Lining breaks down
- Exit through vagina as blood and mucus
- Cycle duration: Roughly monthly
- Menstruation period: 2-8 days typically

7.3.3 (d) Reproductive Health

Readiness for Sexual Activity:

- Sexual maturation ≠ readiness for sexual acts or parenting
- Physical and mental readiness both important
- Major responsibility requiring careful consideration

Social Pressures:

- Peer pressure for activities
- Family pressure for marriage/children
- Government policies on reproduction
- Importance of informed personal choices

Health Considerations:

Sexually Transmitted Diseases (STDs):

- Disease transmission during intimate contact
- Types:
 - Bacterial: Gonorrhoea, syphilis
 - Viral: Warts, HIV-AIDS
- Prevention: Condom use during sexual activity

Contraceptive Methods:

Categories:

1. Mechanical Barriers:

- Condoms (male)
- Similar coverings (female)
- Function: Prevent sperm-egg contact

2. Hormonal Methods:

- Oral contraceptive pills
- Change hormonal balance
- Prevent egg release
- Side effects possible due to hormonal changes

3. Intrauterine Devices:

- Loop or Copper-T placement in uterus
- Prevent pregnancy
- May cause uterine irritation

4. Surgical Methods:

- Male: Vas deferens blocking
- Female: Fallopian tube blocking
- Permanent sterilization
- Safe long-term but surgery risks exist

Pregnancy Termination:

- Surgical removal of unwanted pregnancies
- Risk of misuse in sex-selective abortions

- Female foeticide problem in society
- Legal prohibition of prenatal sex determination
- Importance of maintaining female-male sex ratio

Population Considerations:

- Birth and death rates determine population size
- Population growth affects living standards
- Inequality vs population size debate
- Need to identify main causes of poor living standards

7.4 Key Processes and Mechanisms

7.4.1 Asexual vs Sexual Reproduction Comparison

Aspect	Asexual Reproduction	Sexual Reproduction
Individuals involved	One	Two
Genetic variation	Limited	High
Speed of reproduction	Fast	Slower
Energy requirement	Lower	Higher
Environmental adaptation	Limited	Better
Examples	Fission, budding, fragmentation	Flowering plants, mammals
◀	'	>

7.4.2 Detailed Reproductive Methods

Fission Types:

- Binary fission: 1 → 2 cells
- Multiple fission: 1 → many cells

• Budding: Outgrowth formation

Plant Reproduction Methods:

- Vegetative propagation
- Spore formation
- Sexual reproduction (flowers)

Animal Reproduction:

- Regeneration (simple animals)
- Sexual reproduction (complex animals)

7.4.3 Human Reproductive Timeline

Pre-puberty: General body growth priority **Puberty:** Sexual maturation begins **Post-puberty:**

Reproductive capability achieved Reproductive years: Active reproduction possible Post-

reproductive: Continued life without reproduction

7.5 Practical Applications and Experiments

Laboratory Activities:

Activity 7.1 - Yeast Growth:

- Sugar solution + yeast granules
- Observation under microscope
- Comparison with bread mould growth

Activity 7.3 - Amoeba Observation:

- Permanent slides of normal and dividing Amoeba
- Comparison of structures

Activity 7.4 - Spirogyra Study:

- Pond water with green filaments
- Tissue identification in microscopic observation

Activity 7.5 - Potato Propagation:

- Potato pieces with and without buds
- Observation of growth differences

Activity 7.6 - Money Plant Cutting:

- Pieces with leaves vs pieces without
- Water treatment and growth observation

Activity 7.7 - Seed Germination:

- Bengal gram seed structure
- Embryo identification

7.6 Human Reproductive System Details

Male System Components:

- Testes (sperm production, testosterone secretion)
- Scrotum (temperature regulation)
- Vas deferens (sperm transport)
- Prostate gland (fluid secretion)
- Seminal vesicles (nutrition provision)
- Urethra (common passage)
- Penis (delivery organ)

Female System Components:

- Ovaries (egg production, hormone secretion)
- Fallopian tubes (egg transport, fertilization site)
- Uterus (embryo development)
- Cervix (uterus opening)
- Vagina (sperm entry, birth passage)

7.7 Health and Social Implications

Reproductive Health Considerations:

- Age-appropriate sexual education
- Disease prevention strategies
- Family planning methods
- Social responsibility
- Gender equality maintenance

Population Dynamics:

- Birth rate vs death rate balance
- Resource availability concerns
- Quality of life considerations
- Social equality importance

Chapter Summary

Reproduction ensures species continuation through various mechanisms. Simple organisms use asexual methods (fission, budding, fragmentation) creating genetically similar offspring. Complex

organisms primarily use sexual reproduction, combining genetic material from two individuals to create variation essential for species survival.

Plants demonstrate both asexual (vegetative propagation) and sexual (flower-based) reproduction. Human reproduction involves complex hormonal, anatomical, and behavioral changes during puberty, leading to capability for sexual reproduction.

The study of reproduction connects cellular biology with population dynamics, showing how individual reproductive choices affect species survival and social structure. Understanding reproductive processes is crucial for health, family planning, and species conservation.

Key Equations and Processes

DNA Replication: Parent DNA \rightarrow 2 identical copies (with minor variations) **Binary Fission:** 1 cell \rightarrow 2 identical cells **Sexual Reproduction:** Male gamete + Female gamete \rightarrow Zygote \rightarrow New organism **Menstrual Cycle:** Monthly preparation \rightarrow ovulation \rightarrow fertilization or menstruation

Study Strategy:

- Understand the evolutionary advantage of each reproductive method
- Connect structure to function in reproductive systems
- Practice labeling reproductive system diagrams
- Relate reproductive health to overall well-being
- Focus on the balance between individual and species benefits

Source: NCERT Science Textbook - Chapter 7 **Complete coverage for comprehensive understanding**